
Chapter 7

Decision Theory

Up to this point most of our discussion has been about epistemology. But
probability theory originated in attempts to understand games of chance,
and historically its most extensive application has been to practical decision-
making. The Bayesian theory of probabilistic credence is a central element
of decision theory, which developed throughout the twentieth century in phi-
losophy, psychology, and economics. Decision theory searches for rational
principles to evaluate the various acts available to an agent at any given
moment. Given what she values (her utilities) and how she sees the world
(her credences), decision theory recommends the act that is most e�cacious
for achieving those values from her point of view.

Decision theory has always been a crucial application of Bayesian theory.
In his seminal The Foundations of Statistics, L.J. Savage wrote,

Much as I hope that the notion of probability defined here is
consistent with ordinary usage, it should be judged by the con-
tribution it makes to the theory of decision. (Savage 1954, p.
27)

Decision theory has also been extensively studied, and a number of excel-
lent book-length introductions are now available. (I recommend one in the
Further Readings section of this chapter.) As a result, I have not attempted
to make this chapter nearly so comprehensive as the preceding chapter on
confirmation. I aim only to acquaint the reader with the main ideas and
terminology one would need to work farther into the philosophy of decision
theory, as well as the concepts we will need for discussions later in the book.

We will begin with the general mathematical notion of an expectation,
followed by the philosophical notion of utility. We will then see how Savage
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186 CHAPTER 7. DECISION THEORY

calculates expected utilities to determine rational preferences among acts,
and the formal properties of rational preference that result. Next comes
Richard Je↵ery’s Evidential Decision Theory, which improves on Savage by
applying to probabilistically dependent states and acts. We will then discuss
Je↵rey’s troubles with certain kinds of risk-aversion (especially the Allais
Paradox), and with Newcomb’s Problem. Causal Decision Theory will be
suggested as a better response to Newcomb. I will end by briefly tracing
some of the historical back-and-forth about which decision theory handles
Newcomb’s problem best.

7.1 Calculating expectations

Suppose there’s a numerical quantity—the number of hits a particular batter
will have in tonight’s game, say—and you have opinions about what value
that quantity will take. We can then calculate your expectation for the
quantity. While there are subtleties we will return to later, the basic idea
of an expectation is to multiply each value the quantity might take by your
credence that it’ll take that value, then add up the results. So if you’re 30%
confident the batter will have 1 hit, 20% confident she’ll have 2 hits, and
50% confident she’ll have 3, your expectation for the number of hits is

0.30 ¨ 1 ` 0.20 ¨ 2 ` 0.50 ¨ 3 “ 2.2 (7.1)

Your expectation of a quantity is not the value you anticipate the quantity
will actually take, or even the value you think it’s most probable the quantity
will take—in the baseball example, you’re certain the batter won’t have
2.2 hits in tonight’s game! Your expectation of a quantity is more like an
estimate of the value the quantity will take. When you’re uncertain about
the value of a quantity, a good estimate may straddle the line between
multiple options.

We can also think of your expectation for a quantity as a weighted av-
erage of its possible values, with weights provided by your unconditional
credences in those various possibilities. This weighted average becomes an
actual average for repeatable situations. Suppose you’re certain that this
batter will play in many games over time. The law of large numbers says
that if you satisfy the probability axioms, you’ll have credence 1 that as the
number of games increases, the average number of hits per game will tend
towards your expectation for that quantity. In other words, you’re highly
confident that as the number of games approaches the limit, the batter’s
average hits per game will approach 2.2.1 So while your expectation isn’t



7.1. CALCULATING EXPECTATIONS 187

the number of hits you anticipate will actually happen in a given game, it
is the average number of hits per game you expect in the long run.

We’ve already calculated expectations for a few di↵erent quantities in
this book. For example, when you lack inadmissible evidence the Principal
Principle requires your credence in a proposition to equal your expectation
of its chance. (See especially our calculation in Equation (5.7).) But by far
the most commonly calculated expectations in life are monetary values. For
example, suppose you have the opportunity to buy stock in a company just
before it announces quarterly earnings. If the announcement is good you’ll
be able to sell shares at $100 each, but if the announcement is bad you’ll be
forced to sell at $10 apiece. The value you place in these shares depends on
your confidence in a good report. If you’re 40% confident in a good earnings
report, your expected value for each share is

$100 ¨ 0.40 ` $10 ¨ 0.60 “ $46 (7.2)

As a convention, we let positive monetary values stand for money accrued
to the agent; negative monetary values are amounts the agent pays out. So
your expectation of how much money you will receive for each share is $46.

An agent’s fair price for an investment is what she takes to be that
investment’s break-even point—she’d pay anything up to that amount of
money in exchange for the investment. If you use expected values to make
your investment decisions, your fair price for each share of the stock just
described will be $46. Given the opportunity to buy shares for less than
$46 each, you’ll expect to make a profit on them; on the other hand, you’d
expect to lose money on shares priced higher than that.

There are a couple of reasons why it’s sensible to set your fair price for an
investment equal to your expectation of its monetary return. First, suppose
you know you’re going to be confronted with this exact investment situation
many, many times. The law of large numbers says that in the long run you
should anticipate an average return of $46 per share. So if you’re going to
adopt a standing policy for buying and selling such investments, you are
highly confident that any price higher than $46 will lose you money and
any price lower than $46 will make you money in the long-term. Second,
expectations vary in intuitive ways when conditions change. If you become
more confident in a good earnings report, you should be willing to pay more
for a share, and the expected value reflects that. On the other hand, if you
learn that a good earnings report will send the share value to only $50, this
decreases the expected value and also should decrease the price you’d be
willing to pay.
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An investment is a type of bet, and fair betting prices play a significant
role in Bayesian lore. (We’ll see one reason why in Chapter 9.) A bet that
pays $1 if proposition P is true and nothing otherwise has an expected value
of

$1 ¨ crpP q ` $0 ¨ crp„P q “ $crpP q (7.3)

If you use expectations to calculate fair betting prices, your price for a
gamble that pays $1 on P equals your unconditional credence in P .

A lottery ticket is a common type of bet, and in the right situation cal-
culating its expected value can be extremely lucrative. Ellenberg (2014, Ch.
11) relates the story of Massachusetts’ Cash WinFall state lottery game,
which was structured so that if the jackpot rose above a particular level,
payo↵s went up even for players who won a prize other than the jackpot.
Because of this structure, when the jackpot rose high enough the expected
payo↵ for a single ticket could climb higher than the price the state charged
for that ticket. For example, on February 7, 2005 the expected value of a $2
lottery ticket was $5.53. The implications of this arrangement were under-
stood by three groups of individuals—led respectively by an MIT student,
a medical researcher in Boston, and a retiree in Michigan who had played
a short-lived similar game in his home state. Of course, the expected value
of a ticket isn’t necessarily what you will win if you buy a single ticket, but
because of the long-run behavior of expectations your confidence in a net
profit goes up the more tickets you buy. So these groups bought a lot of
tickets. For instance, on August 13, 2010 the MIT group bought around
700,000 tickets, almost 90% of the Cash WinFall tickets purchased that day.
Their $1.4 million investment netted about $2.1 million in payouts, for a
50% profit in one day. Expected value theory can be very e↵ective.

7.1.1 The move to utility

Yet sometimes we value things other than money. For example, suppose it’s
late at night, it’s cold out, you’re trying to catch a bus that costs exactly
$1, and you’ve got no money on you. A stranger o↵ers either to give you $1
straight up, or to flip a fair coin and give you $2.02 if it comes up heads. It
might be highly rational for you to prefer the guaranteed dollar even though
its expected monetary value is less than that of the coin bet.

Decision theorists and economists explain this preference by introducing
the notion of utility. Introduced by Daniel Bernoulli and Gabriel Cramer in
the 18th century,2 utility is a numerical quantity meant to directly measure
how much an agent values an arrangement of the world. Just as we suppose
that each agent has her own credence distribution, we will suppose that each
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agent has a utility distribution over the propositions in language L. The
utility an agent assigns to a proposition represents how much she values
that proposition’s being true (or if you like, how happy that proposition’s
being true would make her). If an agent would be just as happy for one
proposition to be true as another, she assigns them equal utility. But if it
would make her happier for one of those propositions to be true, she assigns
it the higher utility of the two.

While there continue to be debates between Subjective Bayesians and
Objective Bayesians (in both the senses identified in Section 5.1.2) concern-
ing probability and credence, almost everyone working on decision theory
these days is a subjective utility theorist: utility distributions are assumed
to be features of individual agents that may di↵er without the implication
of irrationality. If I assign more value to the proposition that the Yankees
win this year’s pennant than the proposition that the Mets do, while you
assign the opposite, neither of us need be irrational.

Utilities provide a uniform value-measurement scale. To see what I mean,
consider the fact that in the bus example above, you don’t value each dollar
equally. Going from zero dollars to one dollar would mean a lot to you; it
would get you out of the cold and on your way home. Going from one dollar
to two dollars would not mean nearly as much in your present context. Not
every dollar represents the same amount of value in your hands, so counting
the number of dollars in your possession is not a consistent measure of how
much you value your current state. On the other hand, utilities measure
value uniformly. We stipulate that each added unit of utility (sometimes
called a util) is equally valuable to an agent. She is just as happy to go
from ´50 utils to ´49 as she is to go from 1 util to 2, and so on.

Having introduced this uniform value scale, we can explain your prefer-
ences in the bus case using expectations. Admittedly, the coin flip gamble
has a higher expected monetary payo↵ ($1.01) than the guaranteed dollar.
But monetary value doesn’t always translate neatly to utility, and utility
relfects the values on which you truly make your decisions. Let’s say receiv-
ing one dollar is worth 100 utils to you in this case, while receiving $2.02 is
worth 102 utils. (The larger amount of money is still more valuable to you;
it just isn’t more valuable by much.) Now when we calculate the expected
utility of the gamble, it only comes to 51 utils, which is much less than the
100 expected utils associated with the guaranteed dollar. So you prefer the
dollar guarantee.

The setup of this example is somewhat artificial, because it makes the
value of money change radically at a particular cuto↵ point. But economists
think money generally has a decreasing marginal utility for agents.
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While an agent always receives some positive utility from receiving another
dollar (or peso, or yuan, or. . . ), the more dollars she already has the less
that additional bit of utility will be. The first billion you earn makes your
family comfortable; the second billion doesn’t have as much significance in
your life. Postulating an underlying locus of value distinguishable from net
worth helps explain why we don’t always chase the next dollar as hard as
we chased the first.

With that said, quantifying value on a constant numerical scale intro-
duces many of the same problems we found with quantifying confidence.
First, it’s not clear that a real agent’s psychology will always be as rich as
a numerical utility structure seems to imply. And second, the moment you
assign numerical utilities to every arrangement of the world you make them
all comparable; the possibility of incommensurable values is lost. (Compare
Section 1.2.2.)

7.2 Expected Utility Theory

7.2.1 Preference orderings, and money pumps

A decision problem presents an agent with a partition of acts, from which
she must choose exactly one. If the agent is certain how much utility will be
generated by the performance of each act, the choice is simple—she prefers
the act leading to the highest-utility result. Yet the utility resulting from an
act often depends on features of the world beyond the agent’s control (think,
for instance, of the factors determining whether a particular career choice
turns out well), and the agent may be uncertain how those features stand.
In that case, the agent needs a technique for factoring her uncertainties into
her decision.

There are many lively controversies in decision theory, but we will focus
mainly on the question of how an agent should combine her credences and
utilities to determine her preferences among acts. The first assumption of
decision theory is that a rational agent uses some valuation function to
assign each act a numerical score. This creates an ordering over the acts;
the agent prefers act A to act B just in case A receives a higher score. In
that case we write A ° B. If A and B receive exactly the same score, the
agent is indi↵erent between A and B and we write A„B. Given a particular
decision problem, a rational agent will select the available act that she most
prefers (or—if there are ties at the top—an act from amongst those she most
prefers).

The moment we require an agent to set her preferences according to
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a numerical score, we introduce a number of formal properties into her
preference ordering. For example:

Preference Asymmetry: There do not exist acts A and B such that the
agent both prefers A to B and prefers B to A.

Preference Transitivity: For any acts A, B, and C, if the agent prefers
A to B and B to C, then the agent prefers A to C.

Why must these properties hold? Take Preference Asymmetry. The agent
assigns A°B (the agent prefers A to B) just in case her valuation function
gives A a higher score. In that case B will receive the lower score, so it won’t
be the case that B ° A. (The reader may construct a similar argument for
Preference Transitivity.)

Hopefully it seems sensible that a rational preference ordering should
satisfy these properties. One might object to Preference Transitivity that
an agent may prefer A to B and prefer B to C, but never have thought to
compare A to C. In other words, one might think that an agent’s preference
ordering could go silent on the comparison between A and C. Yet once more,
having a numerical valuation function over the entire set of acts settles this
issue; it forces the agent’s preferences to form a total ordering. Decision
theorists sometimes express this as:

Preference Completeness: For any acts A and B, exactly one of the
following is true: the agent prefers A to B, the agent prefers B to
A, or the agent is indi↵erent between the two.

Given that we’re dealing with complete preferences, we can go beyond
our intuitions about Preference Asymmetry and Preference Transitivity to
provide an argument for the two. Consider a situation in which some of
us find ourselves all the time. On any given weeknight, I would prefer to
do something else over washing the dishes. (Going to a movie? Great!
Watching the game? Good idea!) But when the week ends and the dishes
have piled up, I realize that I would’ve preferred foregoing one of those
weeknight activites in order to avoid a disgusting kitchen. Each of my
individual decisions was made in accordance with my preferences among the
acts I was choosing between at the time, yet together those local preferences
add up to a global outcome I disprefer.

A student once suggested to me that he prefers eating out to cooking
for himself, prefers eating at a friend’s to eating out, but prefers his own
cooking to his friend’s. Imagine one night my student is preparing himself
dinner, then decides he’d prefer to order out. He calls up the takeout place,
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but before they pick up the phone he decides he’d rather drive to his friend’s
for dinner. He gets in his car and is halfway to his friend’s, when he decides
he’d rather cook for himself. At which point he turns around and goes home,
having wasted a great deal of time and energy. Each of those choices reflects
the student’s preference between the two options he considers at the time,
yet their net e↵ect is to leave him right back where he started meal-wise and
out a great deal of e↵ort overall.

My student’s preferences violate Transitivity; as a result he’s susceptible
to a money pump. In general, a money pump against intransitive pref-
erences (preferring A to B, B to C, and C to A) can be constructed like
this: Suppose you’re about to perform act B, and I suggest I could make
it possible to do A instead. Since you prefer A to B, there must be some
amount of something (we’ll just suppose it’s money) you’d be willing to pay
me for the option to perform A. So you pay the price, are about to perform
A, but then I hold out the possibility of performing C instead. Since you
prefer C to A, you pay me a small amount to make that switch. But then I
o↵er you the opportunity to perform B rather than C—for a small price, of
course. And now you’re back to where you started with respect to A, B, and
C, but out a few dollars for your trouble. To add insult to injury, I could
repeat this set of trades again, and again, milking more and more money
out of you until I decide to stop. Hence the “money pump” terminology.

Violating Preference Transitivity leaves one susceptible to such sets of
money-pumping trades. (If you violate Preference Asymmetry, the money
pump is even simpler.) In a money pump, the agent proceeds through a
number of exchanges, each of which looks favorable given his preferences
between the two actions involved. But when those exchanges are combined,
the total package produces a net loss (which the agent would prefer to avoid).
The money pump therefore seems to reveal an internal inconsistency between
the agent’s local and global preferences, as in my dishwashing example. (We
will further explore this kind of inconsistency in our Chapter 9 discussion of
Dutch Books.) The irrationality of being susceptible to a money pump has
been taken as a strong argument against violating Preference Asymmetry
or Transitivity.

7.2.2 Savage’s expected utility

Savage (1954) frames decision problems using a partition of acts available
to the agent and a partition of states the world might be in. A particular
act performed with the world in a particular state produces a particular
outcome. Agents assign numerical utility values to outcomes; given partial
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information they also assign credences over states.3

Here’s a simple example: Suppose you’re trying to decide whether to
carry an umbrella today. This table displays the utilities you assign various
outcomes:

rain dry
take 0 ´1
umbrella
leave ´10 0
it

You have two available acts, represented in the rows of the table. There are
two possible states of the world, represented in the columns. Performing a
particular act when the world is in a particular state produces a particular
outcome. If you leave your umbrella behind and it rains, the outcome is
you walking around wet. The cells in the table report your utilities for the
various possible outcomes. Your utility for walking around wet is ´10 utils,
while carrying an umbrella on a dry day is inconvenient but not nearly as
unpleasant (´1 util).

Now suppose you’re uncertain about the state of the world; you have
a 0.30 credence in rain. How can you evaluate the two available acts and
set your preferences between them? For a finite partition S1, S2, . . . , Sn of
possible states of the world, Savage endorses the following valuation function:

EUSAVpAq “ upA& S1q ¨ crpS1q ` upA& S2q ¨ crpS2q
` . . . ` upA& Snq ¨ crpSnq (7.4)

Here A is the particular act being evaluated. Savage evaluates acts by
calculating their expected utilities; EUSAVpAq represents the expected utility
of act A calculated in the manner Savage prefers. (We’ll see other ways of
calculating expected utility later on.) crpSiq is the agent’s unconditional
credence that the world is in state Si; upA & Siq is the utility she assigns
to the outcome that will eventuate should she perform act A in state Si.
So EUSAV calculates the weighted average of the utilities the agent might
receive if she performs A, weighted by her credence that she will receive
each one. Savage holds that given a partition of acts to consider, a rational
individual will prefer to perform an act with at least as great an expected
utility as that of any act on o↵er.

What does that mean for the present case? We calculate expected utili-
ties for each of the acts available as follows:

EUSAVptakeq “ 0 ¨ 0.30 ` ´1 ¨ 0.70 “ ´0.7

EUSAVpleaveq “ ´10 ¨ 0.30 ` 0 ¨ 0.70 “ ´3
(7.5)
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Taking the umbrella has the higher expected utility, so Savage thinks that
if you’re rational you’ll prefer to take the umbrella. You’re more confident
it’ll be dry than rain, but this is outweighed by the much greater disutility
of a disadvantageous decision in the latter case than the former.

EUSAV is a valuation function that combines credences and utilities in
a specific way to assign numerical scores to acts. As a numerical valuation
function, it generates a preference ordering satisfying Asymmetry, Transi-
tivity, and Completeness. But calculating expected utilities this way also
introduces new features not shared by all valuation functions. For example,
Savage’s expected utility theory yields preferences that satisfy the:

Dominance Principle: If act A produces a higher-utility outcome than
act B in each possible state of the world, then A is preferred to
B.

The Dominance Principle4 seems intuitively like a good rational principle.
Yet (surprisingly) there are decision problems in which it gives very bad
advice. Since Savage’s expected utility theory entails the Dominance Prin-
ciple, it can be relied upon only when we don’t find ourselves in decision
problems like that.

7.2.3 Je↵rey’s theory

To see what can go wrong with dominance reasoning, consider this example
from (Weirich 2012):

A student is considering whether to study for an exam. He rea-
sons that if he will pass the exam, then studying is wasted e↵ort.
Also, if he will not pass the exam, then studying is wasted ef-
fort. He concludes that because whatever will happen, studying
is wasted e↵ort, it is better not to study.

The student entertains two possible acts—study or not study—and two pos-
sible states of the world—he either passes the exam or he doesn’t. His utility
table looks something like this:

pass fail
study 18 ´5

don’t 20 ´3
study
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Because studying costs e↵ort, passing having not studied is better than
passing having studied, and failing having not studied is also better than
failing having studied. So whether he passes or fails, not studying yields a
higher utility. By the Dominance Principle, the student should prefer not
studying to studying.

This is clearly a horrible argument; it ignores the fact that whether
the student studies a↵ects whether he passes the exam.5 The Dominance
Principle—and Savage’s expected utility theory in general—breaks down
when the state of the world that eventuates depends on the act the agent
performs. Savage recognizes this limitation, and so requires that the acts
and states used in framing decision problems be independent of each other.
Je↵rey (1965), however, notes that in real life we often analyze decision
problems in terms of dependent acts and states. Moreover, he worries that
agents might face decision problems in which they are unable to identify
independent acts and states.6 So it would be helpful to have a decision
theory that didn’t require acts and states to be independent.

Je↵rey o↵ers just such a theory. The key innovation is a new valuation
function that calculates expected utilities di↵erently from Savage’s. Given
an act A and a finite partition S1, S2, . . . , Sn of possible states of the world,7

Je↵rey calculates

EUEDTpAq “ upA& S1q ¨ crpS1 |Aq ` upA& S2q ¨ crpS2 |Aq
` . . . ` upA& Snq ¨ crpSn |Aq (7.6)

I’ll explain the “EDT” subscript later on; for now, it’s crucial to see that
Je↵rey alters Savage’s approach (Equation (7.4)) by replacing the agent’s
unconditional credence that a given state Si obtains with the agent’s con-
ditional credence that Si obtains given A. This incorporates the possibility
that performing the act the agent is evaluating will change the probabilities
of various states of the world.

To see how this works, consider Je↵rey’s (typically civilized) example of
a guest deciding whether to bring white or red wine to dinner. The guest
is certain his host will serve either chicken or beef, but doesn’t know which.
The guest’s utility table is as follows:

chicken beef
white 1 ´1
red 0 1

For this guest, bringing the right wine is always pleasurable. Red wine with
chicken is merely awkward, while white wine with beef is a disaster.
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Typically, the entree for an evening is settled well before the guests arrive.
But let’s suppose our guest suspects his host is especially accommodating.
The guest is 75% confident that the host will select a meat in response to
the wine provided. (Perhaps the host has a stocked pantry, and waits to
prepare dinner until the wine has arrived.) In that case, the state (meat
served) depends on the agent’s act (wine chosen). This means the agent
cannot assign a uniform unconditional credence to each state prior to his
decision. Instead, the guest assigns one credence to chicken conditional
on his bringing white, and another credence to chicken conditional on his
bringing red. These credences are reflected in the following table:

chicken beef
white 0.75 0.25
red 0.25 0.75

It’s important to read the credence table di↵erently from the utility table.
In the utility table, the entry in the white/chicken cell is the agent’s utility
assigned to the outcome of chicken served and white wine. In the credence
table, the white/chicken entry is the agent’s credence in chicken served given
white wine. The probability axioms and Ratio Formula demand that all the
credences conditional on white wine sum to 1, so the values in the first row
sum to 1 (as do the values in the second row).

We can now use Je↵rey’s formula to calculate the agent’s expected utility
for each act. For instance,

EUEDTpwhiteq “ upwhite & chickenq ¨ crpchicken |whiteq
` upwhite & beefq ¨ crpbeef |whiteq

“ 1 ¨ 0.75 ` ´1 ¨ 0.25
“ 0.5

(7.7)

(We multiply the values in the first row of the utility table by the corre-
sponding values in the first row of the credence table, then sum the results.)
A similar calculation yields EUEDTpredq “ 0.75. Bringing red wine has a
higher expected utility for the agent than bringing white, so the agent should
prefer bringing red.

Earlier I said somewhat vaguely that Savage requires acts and states
to be “independent”; Je↵rey’s theory gives that notion a precise meaning.
EUEDT revolves around an agent’s conditional credences, so for Je↵rey the
relevant notion of independence is probabilistic independence relative to the
agent’s credence function. That is, an act A and state Si are independent
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for Je↵rey just in case
crpSi |Aq “ crpSiq (7.8)

In the special case where the act A being evaluated is independent of each
state Si, the crpSi |Aq expressions in Je↵rey’s formula may be replaced with
crpSiq expressions. This makes Je↵rey’s expected utility calculation iden-
tical to Savage’s. When acts and states are probabilistically independent,
Je↵rey’s theory yields the same preferences as Savage’s. And since Savage’s
theory entails the Dominance Principle, Je↵rey’s theory will also embrace
Dominance in this special case.

But what happens to Dominance when acts and states are dependent?
Here Je↵rey o↵ers a nuclear deterrence example. Suppose a nation is choos-
ing whether to arm itself with nuclear weapons, and knows its rival nation
will follow its lead. The possible states of the world under consideration are
war versus peace. The utility table might be:

war peace
arm ´100 0
disarm ´50 50

Wars are worse when both sides have nuclear arms; peace is also better
without nukes on hand (because of nuclear accidents, etc.). A dominance
argument is now available since whichever state obtains, disarming provides
the greater utility. So applying Savage’s theory to this example would yield
a preference for disarming.

Yet an advocate of nuclear deterrence will take the states in this example
to depend on the acts. The deterrence advocate’s credence table might be:

war peace
arm 0.1 0.9
disarm 0.8 0.2

The idea of deterrence is that if both countries have nuclear arms, war
becomes much less likely. If arming increases the probability of peace, the
acts and states in this example are probabilistically dependent. Je↵rey’s
theory calculates the following expected utilities from these tables:

EUEDTparmq “ ´100 ¨ 0.1 ` 0 ¨ 0.9 “ ´10

EUEDTpdisarmq “ ´50 ¨ 0.8 ` 50 ¨ 0.2 “ ´30
(7.9)

Relative to the deterrence advocate’s credences, Je↵rey’s theory yields a
preference for arming. Act/state dependence has created a preference or-
dering at odds with the Dominance Principle.8 When an agent takes the acts
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and states in a decision problem to be independent, Je↵rey’s and Savage’s
decision theories are interchangeable, and dominance reasoning can be re-
lied upon. But Je↵rey’s theory also provides reliable verdicts when acts and
states are dependent, a case in which Savage’s theory and the Dominance
Principle may fail.

7.2.4 Risk aversion, and Allais’ paradox

People sometimes behave strangely when it comes to taking risks. Many
agents are risk-averse; they would rather have a sure $10 than take a 50-
50 gamble on $30, even though the expected dollar value of the latter is
greater than that of the former.

Economists have traditionally explained this preference by appealing to
the declining marginal utility of money. If the first $10 yields much more
utility than the next $20 for the agent, then the sure $10 may in fact have
a higher expected utility than the 50-50 gamble. This makes the apparently
risk-averse behavior perfectly rational. But it does so by portraying the
agent as only apparently risk-averse. The suggestion is that the agent would
be happy to take a risk if only it o↵ered him a higher expectation of what
he really values—utility. But might some agents be genuinely willing to
give up a bit of expected utility if it meant they didn’t have to gamble? If
we could o↵er agents a direct choice between a guaranteed 10 utils and a
50-50 gamble on 30, might some prefer the former? (Recall that utils are
defined so as not to decrease in marginal value.) And might that preference
be rationally permissible?

Let’s grant for the sake of argument that risk-aversion concerning mon-
etary gambles can be explained by attributing to the agent a decreasing
marginal utility distribution over dollars. Other documented responses to
risk cannot be explained by any kind of utility distribution. Suppose a fair
lottery is to be held with 100 numbered tickets. You are o↵ered two gambles
to choose between, with the following payo↵s should particular tickets be
drawn:

Ticket 1 Tickets 2–11 Tickets 12–100
Gamble A $1M $1M $1M
Gamble B $0 $5M $1M

Which gamble would you prefer? After recording your answer somewhere,
consider the next two gambles (on the same lottery) and decide which of
them you would prefer if they were your only options:



7.2. EXPECTED UTILITY THEORY 199

Ticket 1 Tickets 2–11 Tickets 12–100
Gamble C $1M $1M $0
Gamble D $0 $5M $0

When subjects are surveyed, they often prefer Gamble D to C; they’re
probably not going to win anything, but if they do they’d like a serious shot
at $5 million. On the other hand, many of the same subjects prefer Gamble
A to B, because A guarantees them a payout of $1 million.

Yet anyone who prefers A to B while at the same time preferring D to
C violates Savage’s9

Sure-Thing Principle: If two acts yield the same outcome on a particu-
lar state, any preference between them remains the same if that
outcome is changed.

In our example, Gambles A and B yield the same outcome for tickets 12
through 100: 1 million dollars. If we change that common outcome to 0
dollars, we get Gambles C and D. The Sure-Thing Principle requires an
agent who prefers A to B also to prefer C to D. Put another way: if the
Sure-Thing Principle holds, we can determine a rational agent’s preferences
between any two acts by focusing exclusively on the states for which those
acts produce di↵erent outcomes. In both the decision problems here, tickets
12 through 100 produce the same outcome no matter which act the agent
selects. So we ought to be able to determine her preferences by focusing
exclusively on the outcomes for tickets 1 through 11. Yet if we focus exclu-
sively on those tickets, A stands to B in exactly the same relationship as C
stands to D. So the agent’s preferences across the two decisions should be
aligned.

The Sure-Thing Principle is a theorem of Savage’s decision theory. It is
also therefore a theorem of Je↵rey’s decision theory for cases in which acts
and states are independent, as they are in the present gambling example.
Thus preferring A to B while preferring D to C—as real-life subjects often
do—is incompatible with these two decision theories. And here we can’t
chalk up the problem to working with dollars rather than utils. There is no
possible utility distribution over dollars on which Gamble A has a higher
expected utility than Gamble B while Gamble D has a higher expected
utility than Gamble C. (See Exercise 7.5.)

Je↵rey and Savage, then, must shrug o↵ these commonly-paired prefer-
ences as irrational. Yet Maurice Allais, the Nobel-winning economist who
introduced the gambles in his (1953), thought that both sets of preferences
could be perfectly rational, and rationally held together. Because it’s im-
possible to maintain these seemingly-reasonable preferences while hewing to
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standard decision theory, the example is now known as Allais’ Paradox. Al-
lais thought the example revealed a deep flaw in the decision theories we’ve
been considering.

We have been discussing these decision theories as normative accounts
of how rational agents behave. Economists, however, often assume that de-
cision theory provides an accurate descriptive account of real agents’ mar-
ket decisions. Real-life subjects’ responses to cases like the Allais Paradox
prompted economists to develop new descriptive theories of agents’ behavior,
such as Kahneman and Tversky’s Prospect Theory (Kahneman and Tver-
sky 1979; Tversky and Kahneman 1992). More recently, Buchak (2013) has
proposed a generalization of standard decision theory that accounts for risk
aversion without positing declining marginal utilities and is consistent with
the Allais preferences subjects often display.

7.3 Causal Decision Theory

Although we have been focusing on the expected values of propositions de-
scribing acts, Je↵rey’s valuation function can be applied to any sort of propo-
sition. For example, suppose my favorite player has been out of commission
for weeks with an injury, and I am waiting to hear whether he will play
in tonight’s game. I start wondering whether I would prefer that he play
tonight on not. Usually it would make me happy to see him on the field,
but there’s the possibility that he will play despite his injury’s not being
fully healed. That would definitely be a bad outcome. So now I combine my
credences about states of the world (is he fully healed? is he not?) with my
utilities for the various possible outcomes (plays fully healed, plays not fully
healed, etc.) to determine how happy I would be to hear that he’s playing
or not playing. Having calculated expected utilities for both “plays” and
“doesn’t play”, I decide whether I’d prefer that he play or not.

Put another way, I can use Je↵rey’s expected utility theory to determine
whether I would consider it good news or bad were I to hear that my favorite
player will be playing tonight. And I can do so whether or not I have any
influence on the truth of that proposition. Je↵rey’s theory is sometimes
described as calculating the “news value” of a proposition.

Even for propositions describing our own acts, Je↵rey’s expected utility
calculation assesses news value. I might be given a choice between a sure $1
and a 50-50 chance of $2.02. I would use my credences and utility function
to determine expected values for each act, then declare which option I pre-
ferred. But notice that this calculation would go exactly the same if instead
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of my selecting among the options, someone else was selecting on my behalf.
If my utility function assigns declining marginal utility to money, I might
prefer just as much that someone else pick the sure dollar for me as I would
prefer picking that option for myself. What’s ultimately being compared are
the proposition that I receive a sure dollar and the proposition that I receive
whatever payo↵ results from a particular gamble. Whether I have the ability
to make one of those propositions true rather than the other is irrelevant to
Je↵rey’s preference calculations.

7.3.1 Newcomb’s Problem

Je↵rey’s attention to news value irrespective of agency leads him into trouble
with Newcomb’s Problem. This problem was introduced to philosophy by
Robert Nozick, who attributed its construction to the physicist William
Newcomb. Here’s how Nozick introduced the problem:

Suppose a being in whose power to predict your choices you
have enormous confidence. (One might tell a science-fiction story
about a being from another planet, with an advanced technology
and science, who you know to be friendly, etc.) You know that
this being has often correctly predicted your choices in the past
(and has never, so far as you know, made an incorrect prediction
about your choices), and furthermore you know that this being
has often correctly predicted the choices of other people, many
of whom are similar to you, in the particular situation to be
described below. One might tell a longer story, but all this leads
you to believe that almost certainly this being’s prediction about
your choice in the situation to be discussed will be correct.

There are two boxes. [The first box] contains $1,000. [The second
box] contains either $1,000,000, or nothing. . . . You have a choice
between two actions: (1) taking what is in both boxes (2) taking
only what is in the second box.

Furthermore, and you know this, the being knows that you know
this, and so on:

(I) If the being predicts you will take what is in both boxes, he
does not put the $1,000,000 in the second box.

(II) If the being predicts you will take only what is in the second
box, he does put the $1,000,000 in the second box.
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The situation is as follows. First the being makes its prediction.
Then it puts the $1,000,000 in the second box, or does not, de-
pending upon what it has predicted. Then you make your choice.
What do you do? (1969, pp. 114–5)

Historically, Newcomb’s Problem prompted the development of a new
kind of decision theory, now known as Causal Decision Theory (sometimes
just “CDT”). At the time of Nozick’s discussion, extant decision theories
(such as Je↵rey’s) seemed to recommend taking just one box in Newcomb’s
Problem (so-called “one-boxing”). But many philosophers thought two-
boxing was the rational action.10 Here’s why: By the time you make your
decision, the being has already made its prediction and taken its action.
So the money is already either in the second box, or it’s not—nothing you
decide can a↵ect whether the money is there. However much money is in
the second box, you’re going to get more money ($1,000 more) if you take
both boxes. So you should two-box.

I’ve quoted Nozick’s original presentation of the problem because in the
great literature that has since grown up around Newcomb, there is often
debate about what exactly counts as “a Newcomb Problem”. Does it matter
if the predictor is perfect at making predictions, or if the agent is certain
that the prediction will be correct? Does it matter how the predictor makes
its predictions, and whether backward causation (some sort of information
fed backwards from the future) is involved? Perhaps more importantly, who
cares about such a strange and fanciful problem?

But our purpose is not generalized Newcombology—we want to under-
stand why Newcomb’s Problem spurred the development of Causal Decision
Theory. That can be understood by working with just one version of the
problem. Or better yet, it can be understood by working with a kind of
problem that comes up in everyday life, and is much less fanciful:

I’m standing at the bar, trying to decide whether to order a third
appletini. Drinking a third appletini is the kind of act much
more typical of people with addictive personalities. People with
addictive personalities also tend to become smokers. I’d kind of
like to have another drink, but I really don’t want to become
a smoker (smoking causes lung-cancer, is increasingly frowned-
upon in my social circle, etc.). So I shouldn’t order that next
appletini.

Let’s work through the reasoning here on decision-theoretic grounds. First,
stipulate that I have the following utility table:
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smoker non
third ´99 1
appletini
no ´100 0
more

Ordering the third appletini is a dominant act. But dominance should
dictate preference only when acts and states are independent, and my con-
cern here is that they’re not. My credence distribution has the following
features (with A, S, and P representing the propositions that I order the
appletini, that I become a smoker, and that I have an addictive personality,
respectively):

crpS |P q ° crpS | „P q (7.10)

crpP |Aq ° crpP | „Aq (7.11)

I’m more confident I’ll become a smoker if I have an addictive personality
than if I don’t. And having that third appletini is a positive indication that I
have an addictive personality. Combining these two equations (and making
a couple more assumptions I won’t bother spelling out), we get:

crpS |Aq ° crpS | „Aq (7.12)

From my point of view, ordering the third appletini is positively correlated
with becoming a smoker. Looking back at the utility table, I do not consider
the states listed along the top to be probabilistically independent of the acts
along the side. Now I calculate my Je↵rey expected utilities for the two acts:

EUEDTpAq “ ´99 ¨ crpS |Aq ` 1 ¨ crp„S |Aq
EUEDTp„Aq “ ´100 ¨ crpS | „Aq ` 0 ¨ crp„S | „Aq (7.13)

Looking at these equations, you might think that A receives the higher ex-
pected utility. But I assign a considerably higher value to crpS |Aq than
crpS | „Aq, so the ´99 in the top equation is multiplied by a significantly
larger quantity than the ´100 in the bottom equation. Assuming the corre-
lation between S and A is strong enough, „A receives the better expected
utility and I prefer to perform „A.

But this is all wrong! Whether I have an addictive personality is (let’s
say) determined by genetic factors, not anything I could possibly a↵ect at
this point in my life. The die is cast (so to speak); I either have an addictive
personality or I don’t; it’s already determined (in some sense) whether an
addictive personality is going to lead me to become a smoker. Nothing
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about this appletini—whether I order it or not—is going to change that. So
I might as well enjoy the drink.

Assuming the reasoning in the previous paragraph is correct, it’s an in-
teresting question why Je↵rey’s decision theory yields the wrong result. The
answer is that on Je↵rey’s theory ordering the appletini gets graded down
because it would be bad news about my future. If I order the drink, that’s ev-
idence that I have an addictive personality (as indicated in Equation (7.11)),
which is unfortunate because of its potential consequences for becoming a
smoker. I expect a world in which I order that drink to be a worse world
than a world in which I don’t, and this is reflected in the EUEDT calculation.
Je↵rey’s theory assesses the act of ordering a third appletini not in terms
of the consequences it will cause to come about, but instead in terms of the
consequences it provides evidence will come about. For this reason Je↵rey’s
theory is described as an Evidential Decision Theory (or “EDT”).

The trouble with Evidential Decision Theory is that an agent’s perform-
ing an act may be evidence of a consequence that it’s too late for her to cause
(or prevent). Even though the act indicates the consequence, it seems irra-
tional to factor the value of that consequence into a decision about whether
to peform the act. As Skyrms (1980a, p. 129) puts it, my not having the third
drink in order to avoiding becoming a smoker would be “a futile attempt to
manipulate the cause by suppressing its symptoms.” In making decisions
we should attend to what we can control—to the causal consequences of our
acts. Weirich writes,

Deliberations should attend to an act’s causal influence on a
state rather than an act’s evidence for a state. A good decision
aims to produce a good outcome rather than evidence of a good
outcome. It aims for the good and not just signs of the good.
Often e�cacy and auspiciousness go hand in hand. When they
come apart, an agent should perform an e�cacious act rather
than an auspicious act. (2012)

7.3.2 A causal approach

The causal structure of our third drink example is depicted in Figure 7.1. As
we saw in Chapter 3, correlation often indicates causation—but not always.
Propositions on the tines of a causal fork will be probabilistically correlated
even though neither causes the other. This accounts for A’s being relevant
to S on my credence function (Equation (7.12)) even though my ordering
the third appletini has no causal influence on whether I’ll become a smoker.
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Figure 7.1: Third drink causal fork

smoker (S) third appletini (A)

addictive personality (P )

The causally spurious correlation in my credences a↵ects Je↵rey’s ex-
pected utility calculation because that calculation works with credences in
states conditional on acts (crpSi |Aq). Je↵rey replaced Savage’s crpSiq with
this conditional expression to track dependencies between states and acts.
The Causal Decision Theorist responds that while credal correlation is a kind
of probabilistic dependence, it may fail to track the causal dependences on
which preferences should be based. So the Causal Decision Theorist’s valu-
ation function is:

EUCDTpAq “ upA& S1q¨crpAÄ S1q ` upA& S2q ¨ crpAÄ S2q
` . . . ` upA& Snq ¨ crpAÄ Snq (7.14)

Here AÄ S represents the subjunctive conditional “If the agent were to
perform act A, state S would occur.”11 Causal Decision Theory uses such
conditionals to track causal relations in the world.12 Of course, an agent may
be uncertain what consequences a given act A would cause. So EUCDT looks
across the partition of states S1, . . . , Sn and invokes the agent’s credence that
A would cause any particular given Si.

For many decision problems, Causal Decision Theory yields the same re-
sults as Evidential Decision Theory. In Je↵rey’s wine example, it’s plausible
that

crpchicken |whiteq “ crpwhiteÄ chickenq “ 0.75 (7.15)

The guest’s credence that chicken is served on the condition that she brings
white wine is equal to her credence that if she were to bring white, chicken
would be served. So one may be substituted for the other in expected utility
calculations, and CDT’s evaluations turn out the same as Je↵rey’s.

But when conditional credences fail to track causal relations (as in cases
with causal forks), the two theories may yield di↵erent results. This is in
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part due to their di↵ering notions of independence. EDT treats act A and
state S as independent when they are probabilistically independent relative
to the agent’s credence function. CDT focuses on whether the agent takes
A and S to be causally independent, which occurs just when

crpAÄ Sq “ crpSq (7.16)

When A has no causal influence on S, the agent’s credence that S will occur
if she performs A is just her credence that S will occur. In the third drink
example my ordering another appletini may be evidence that I’ll become
a smoker, but it has no causal bearing on whether I take up smoking. So
from a Causal Decision Theory point of view, the acts and states in that
problem are independent. When acts and states are independent, dominance
reasoning is appropriate, so I should prefer the dominant act and order that
third appletini.

Now we can return to a version of the Newcomb Problem that distin-
guishes Causal from Evidential Decision Theory. Suppose that the “being”
in Nozick’s story makes its prediction by analyzing your brain state prior to
your making the decision and applying a complex neuro-psychological the-
ory. The being’s track record makes you 99% confident that its predictions
will be correct. And to simplify matters, let’s suppose you assign exactly
1 util to each dollar, no matter how many dollars you already have. Then
your utility and credence matrices for the problem are:

Utilities

P1 P2

T1 1,000,000 0

T2 1,001,000 1,000

Credences

P1 P2

T1 0.99 0.01

T2 0.01 0.99

where T1 and T2 represent the acts of taking one box or two boxes (respec-
tively), and P1 and P2 represent the states of what the being predicted.

Je↵rey calculates expected values for the acts as follows:

EUEDTpT1q “ upT1 & P1q ¨ crpP1 |T1q ` upT1 & P2q ¨ crpP2 |T1q “ 990, 000

EUEDTpT2q “ upT2 & P1q ¨ crpP1 |T2q ` upT2 & P2q ¨ crpP2 |T2q “ 11, 000

(7.17)

So Evidential Decision Theory recommends one-boxing. Yet we can see from
Figure 7.2 that this version of the Newcomb Problem contains a causal fork;
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Figure 7.2: Newcomb Problem causal fork

prediction boxes taken

brain state

the being’s prediction is based on your brain state, which also has a causal
influence on the number of boxes you take. This should make us suspicious
of EDT’s recommendations. The agent’s act and the being’s prediction are
probabilistically correlated in the agent’s credences, as the credence table
reveals. But that’s not because the number of boxes taken has any causal
influence on the prediction.

Causal Decision Theory calculates expected utilities in the example like
this:

EUCDTpT1q “ upT1 & P1q ¨ crpT1Ä P1q ` upT1 & P2q ¨ crpT1Ä P2q
“ 1, 000, 000 ¨ crpT1Ä P1q ` 0 ¨ crpT1Ä P2q

EUCDTpT2q “ upT2 & P1q ¨ crpT2Ä P1q ` upT2 & P2q ¨ crpT2Ä P2q
“ 1, 001, 000 ¨ crpT2Ä P1q ` 1, 000 ¨ crpT2Ä P2q

(7.18)

It doesn’t matter what particular values the credences in these expressions
take, because the act has no causal influence on the prediction. That is,

crpT1Ä P1q “ crpP1q “ crpT2Ä P1q (7.19)

and

crpT1Ä P2q “ crpP2q “ crpT2Ä P2q (7.20)

With these causal independencies in mind, you can tell by inspection of
Equation (7.18) that EUCDTpT2q will be greater than EUCDTpT1q, and Causal
Decision Theory endorses two-boxing.



208 CHAPTER 7. DECISION THEORY

7.3.3 Responses and extensions

So is that it for Evidential Decision Theory? Philosophical debates rarely
end cleanly, and Evidential Decision Theorists have made a number of re-
sponses to the Newcomb Problem.

First, one might respond that one-boxing is the rationally mandated act.
Representing the two-boxers, David Lewis once wrote

The one-boxers sometimes taunt us: if you’re so smart, why
ain’cha rich? They have their millions and we have our thou-
sands, and they think this goes to show the error of our ways.
They think we are not rich because we have irrationally chosen
not to have our millions. (1981b, p. 377)

Lewis’ worry is this: Suppose a one-boxer and a two-boxer each go through
the Newcomb scenario many times. As a successful predictor, the being in
the story will almost always predict that the one-boxer will one-box, and so
place the $1,000,000 in the second box for him. Meanwhile, the two-boxer
will almost always find the second box empty. The one-boxer will rack up
millions of dollars, while the two-boxer will gain only thousands. Each agent
has the goal of making as much money as possible, so one-boxing (and, by
extension, EDT) seems to provide a better rational strategy for reaching
one’s goals than two-boxing (and CDT).

The Causal Decision Theorist’s response (going at least as far back as
(Gibbard and Harper 1978/1981)) is that some unfortunate situations re-
ward agents monetarily for behaving irrationally, and the Newcomb Problem
is one of them. The jury is still out on whether this response is convinc-
ing. In November 2009 the PhilPapers Survey polled over three thousand
philosophers, and found that 31.4% of them accepted or leaned towards two-
boxing in the Newcomb Problem, while 21.3% accepted or leaned towards
one-boxing. (The remaining respondents were undecided or o↵ered a dif-
ferent answer.) So it’s unclear that EDT’s embrace of one-boxing is a fatal
defect. Meanwhile, there are other cases in which EDT seems to give the
intuitively rational result while CDT does not (Egan 2007).

Je↵rey, on the other hand, was convinced that two-boxing is rationally
required in the Newcomb Problem. So he defended Evidential Decision The-
ory in di↵erent ways. In the second edition of The Logic of Decision (1983),
Je↵rey added a ratifiability condition to his EDT. The idea of ratifiability
is that an act is rationally permissible only if the agent assigns it the highest
expected utility conditional on the supposition that he chooses to perform
it. Ratifiability avoids regret—if choosing to perform an act would make you
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wish you’d done something else, then you shouldn’t choose it. In the New-
comb Problem, supposing that you’ll choose to one-box makes you confident
that the being predicted one-boxing, and so makes you confident that the
$1,000,000 is in the second box. So supposing that you’ll choose to one-box
makes two-boxing seem the better choice. One-boxing is unratifiable, and
so can be rationally rejected.

We won’t cover the technical details of ratifiability here, in part because
Je↵rey ultimately abandoned that response. Je↵rey eventually (1993, 2004)
agreed with other commentators that Newcomb’s Problem isn’t really a
decision problem. Suppose that in the Newcomb Problem the agent assigns
the credences we reported earlier because she takes the causal structure of
her situation to be something like Figure 7.2. In that case, she will see her
physical brain state as having such a strong influence on how many boxes
she takes that whether she one-boxes or two-boxes will no longer seem a
free choice. Je↵rey held that in order to make a genuine decision, an agent
must see her choice as the cause of the act (and ultimately the outcome)
produced. Read in this light, the Newcomb case seemed to involve too much
causal influence on the agent’s act from factors besides her choice. In the last
sentences of his final work, Je↵rey wrote, “I now conclude that in Newcomb
problems, ‘One box or two?’ is not a question about how to choose, but
about what you are already set to do, willy-nilly. Newcomb problems are
not decision problems.” (2004, p. 113)

7.4 Exercises

Unless otherwise noted, you should assume when completing these exercises
that credence distributions under discussion satisfy the probability axioms
and Ratio Formula. You may also assume that whenever a conditional prob-
ability expression occurs, the needed proposition has nonzero unconditional
credence so that conditional probabilities are well-defined.

Problem 7.1. When you play craps in a casino there are a number of
di↵erent bets you can make at any time. Some of these are “proposition
bets” on the outcome of the next roll of two fair dice. Below is a list of some
proposition bets, and their payouts. (A payout of 4 to 1 means that if you
put down $1 and win the bet, you keep your original $1 plus an additional
$4. If you lose the bet, you lose your $1.)
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Name of Bet Wins when Payout
Big red Dice total 7 4 to 1
Any craps Dice total 2, 3, or 12 7 to 1
Snake eyes Dice total 2 30 to 1

Suppose you place a $1 bet on each of the three propositions listed above.
Rank the three bets from highest expected dollar value to lowest.

Problem 7.2. (a) Suppose an agent is indi↵erent between two gambles
with the following utility outcomes:

P „P
Gamble 1 x y
Gamble 2 y x

where P is a proposition about the state of the world, and x and y
are utility values with x ‰ y. Assuming this agent maximizues EUSAV,
what can you determine about the agent’s crpP q?

(b) Suppose the same agent is also indi↵erent between these two gambles:

P „P
Gamble 3 a z
Gamble 4 m m

where P is the same proposition as before, a “ 100, and z “ ´100.
What can you determine about m?

Problem 7.3. You are confronted with a decision problem involving two
possible states of the world (S and „S) and three available acts (A, B,
and C). Assume you are using Je↵rey’s decision theory to determine your
preferences.

(a) Suppose that of the three S-outcomes, B&S does not have the highest
utility for you. Also, of the three „S-outcomes, B & „S does not have
the highest utility. Does it follow that you should not choose act B?
Defend your answer.

(b) Suppose that of the S-outcomes, B & S has the lowest utility for you.
Also, of the three „S-outcomes, B & „S has the lowest utility. Does it
follow that you should not choose act B? Defend your answer.˚

˚This problem was inspired by a problem of Brian Weatherson’s.
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Problem 7.4. Prove that the Dominance Principle follows from Savage’s
expected utility theory. (Restrict your discussion to finite partitions of acts
and states.)

Problem 7.5. Referring to the payo↵ tables for Allais’ Paradox in Section
7.2.4, show that no assignment of values to up$0q, up$1Mq, and up$5Mq that
makes EUEDTpAq ° EUEDTpBq will also make EUEDTpDq ° EUEDTpCq.
(You may assume that the agent assigns equal credence to each numbered
ticket’s being selected, and this holds regardless of which gamble is made.)

Problem 7.6. Having gotten a little agressive on a routine single to center
field, you’re now halfway between first base and second base. The throw from
the center fielder is in midair, but given the angle you can’t tell whether it’s
headed to first or second. You must decide whether to proceed to second base
or run back to first. Being out has zero utility for you; being safe is better;
and being safe at second has twice the utility of being safe at first. However
this center fielder has a great track-record at predicting where runners will
go—your credence in his throwing to second conditional on your going there
is 90%, while your credence in his throwing to first conditional on your going
to first is 80%. (Assume that if you and the throw go to the same base, you
will certainly be out, but if you and the throw go to di↵erent bases you’ll
certainly be safe.)

(a) Of the two acts available (running to first or running to second), which
should you prefer according to Evidential Decision Theory (that is, ac-
coring to Je↵rey’s decision theory)?

(b) Does the problem provide enough information to determine which act
is preferred by Causal Decision Theory? If so, explain which act is
preferred. If not, explain what further information would be required
and how it could be used to determine a preference.

Problem 7.7. In the Newcomb Problem, do you think it’s rational to take
just one box or take both boxes? Explain your thinking.

7.5 Further reading

Introductions and Overviews

Martin Peterson (2009). An Introduction to Decision Theory.
Cambridge Introductions to Philosophy. Cambridge: Cam-
bridge University Press
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A book-length general introduction to decision theory, including chapters
on game theory and social choice theory.

Classic Texts

Leonard J. Savage (1954). The Foundations of Statistics. New
York: Wiley

Savage’s classic book laid the foundations for modern decision theory and
much of contemporary Bayesian statistics.

Richard C. Je↵rey (1983). The Logic of Decision. 2nd. Chicago:
University of Chicago Press

In the first edition, Je↵rey’s Chapter 1 introduced a decision theory capable
of handling dependent acts and states. In the second edition, Je↵rey added
an extra section to this chapter explaining his “ratifiability” response to the
Newcomb Problem.

Extended Discussion

Lara Buchak (2013). Risk and Rationality. Oxford: Oxford
University Press

Presents a generalization of the decision theories discussed in this chapter
that is consistent with a variety of real-life agents’ responses to risk. For
instance, Buchak’s theory accommodates genuine risk-aversion, and allows
agents to simultaneously prefer Gamble A to Gamble B and Gamble D to
Gamble C in Allais’ Paradox.

James M. Joyce (1999). The Foundations of Causal Decision
Theory. Cambridge: Cambridge University Press

A systematic explanation and presentation of causal decision theory, unify-
ing that approach under a general framework with evidential decision theory
and proving a representation theorem that covers both. (Note that Joyce
introduces a special kind of

Notes
1The law of large numbers actually comes in many forms, each of which has slightly

di↵erent conditions and a slightly di↵erent conclusion. Most versions require the repeated
trials to be independent and identically distributed (IID), meaning that each trial has the
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same probability of yielding a given result and the result on a given trial is independent of
all previous results. (In other words, you think your batter is consistent across games and
una↵ected by previous performance.) Most versions also assume Countable Additivity for
their proof. Finally, since we are dealing with results involving the infinite, we should
remember that in such cases credence 1 doesn’t necessarily mean certainty. An agent who
satisfies the probability axioms, the Ratio Formula, and Countable Additivity will assign
credence 1 to the average’s approaching the expectation in the limit, but that doesn’t
mean she rules out all possibilities in which those values don’t converge. (For Countable
Additivity and cases of credence-1 that don’t mean certainty, see Section 5.4. For more
details and proofs concerning laws of large numbers, see (Feller 1968, Ch. X).)

2See (Bernoulli 1738/1954) for both his discussion and a reference to Cramer.
3Although Savage didn’t actually approach things this way, to simplify presentation I

will treat acts, states, and outcomes as propositions—the proposition that the agent will
perform the act, the proposition that the world is in a particular state, and the proposition
that a particular outcome occurs.

4The Dominance Principle I’ve presented is sometimes known as the Strong Dominance
Principle. The Weak Dominance Principle says that if A produces at least as good an
outcome as B in each possible state of the world, plus a better outcome in at least one
possible state of the world, thenA is preferred toB. Weak Dominance is also a consequence
of Savage’s expected utility theory, and has the same problems as Strong Dominance.

5In a similar display of poor reasoning, Shakespeare’s Henry V (Act 4, Scene 3) responds
to Westmoreland’s wish for more troops on their side of the battle—“O that we now had
here but one ten thousand of those men in England, that do no work today”—with the
following:

If we are marked to die, we are enough to do our country loss;
and if to live, the fewer men, the greater share of honor.
God’s will, I pray thee wish not one man more.

6For a brief discussion and references, see (Je↵rey 1983, §1.8).
7Instead of referring to “acts”, “states”, “outcomes”, and “utilities”, Je↵rey speaks

of “acts”, “conditions”, “consequences”, and “desirabilities” (respectively). As in my
presentation of Savage’s theory, I have made some changes to Je↵rey’s approach for the
sake of simplicity and consistency with the rest of the discussion.

8The decision-theoretic structure here bears striking similarities to Simpson’s Paradox.
We saw in Section 3.2.3 that while David Justice had a better batting average than Derek
Jeter in each of the years 1995 and 1996, over the entire two-year span Jeter’s average was
better. This was because Jeter had a much higher proportion of his bats in 1996, which
was a better year for both hitters. So selecting a Jeter at-bat is much more likely to land
you in a good year for hitting. Similarly, the deterrence utility table shows that disarming
yields better outcomes than arming on each possible state of the world. Yet arming is
much more likely than disarming to land you in the peace state (the right-hand column
of the table), and so get you a desirable outcome.

9While Savage coined the phrase “Sure-Thing Principle”, it’s actually a bit di�cult to
tell from his text exactly what he meant by it. I’ve presented a contemporary cleaning-up
of Savage’s discussion, inspired by the Sure-Thing formulation in (Eells 1982, p. 10). It’s
also worth noting that the Sure-Thing Principle is intimately related to decision-theoretic
axioms known as Separability and Independence, but we won’t delve into those conditions
here.

10By the way, in case you’re looking for a clever way out Nozick specifies in a footnote
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to the problem that if the being predicts you will decide what to do via some random
process (like flipping a coin), he does not put the $1,000,000 in the second box.

11It’s important for Causal Decision Theory that A Ä S conditionals be “causal”
counterfactuals rather than “backtracking” counterfactuals; we hold facts about the past
fixed when assessing A’s influence on S. (See (Lewis 1981a) for the distinction and some
explanation.)

12There are actually many ways of executing a causal decision theory; the approach
presented here is that of (Gibbard and Harper 1978/1981), drawing from (Stalnaker
1972/1981). Lewis (1981a) thought Causal Decision Theory should instead return to Sav-
age’s unconditional credences and independence assumptions, but with the specification
that acts and states be causally independent. For a comparison of these approaches along
with various others, plus a general formulation of Causal Decision Theory that attempts
to cover them all, see (Joyce 1999).


