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University of California, Irvine, School of Social Sciences, Irvine, CA 92697–5100;
e-mail: bskyrms@uci.edu.

1. In fact, a few months after I gave this talk at PSA 2000 I went to a workshop on
Groups, Multi-level Selection and Economic Dynamics at the Santa Fe Institute where
Theodore Bergstrom presented a paper that gives a much fuller development of the
point of view advocated here. I commend his paper, “The Algebra of Assortative En-
counters and the Evolution of Cooperation,” to the interested reader.

2. Grafen (1982, 1984) identifies offenders.

Altruism, Inclusive Fitness, and
“The Logic of Decision”

Brian Skyrms†

University of California, Irvine

We show how Richard Jeffrey’s The Logic of Decision provides the proper formalism
for calculating expected fitness for correlated encounters in general. As an illustration,
some puzzles about kin selection are resolved.

1. Introduction. It takes more than one symposium to address Dick Jef-
frey’s contributions to epistemology, Bayesian methodology and decision
theory. Two years ago this association convened a symposium on the
contributions that he made to decision theory in his book, The Logic of
Decision. Today, our focus is mainly on Bayesian epistemology, but be-
tween Persi Diaconis’ talk on probability kinematics and Sandy Zabell’s
on radical probabilism, I would like to bring The Logic of Decision back
for a cameo appearance as evolutionary theory.

What I have to say is not really at variance with the most careful treat-
ments of inclusive fitness in the evolutionary literature (for instance Ham-
ilton 1964; Grafen 1982, 1984; Creel 1990; Frank 1998),1 but it is at var-
iance with many of the expositions of inclusive fitness that one is likely to
come across—even in texts and in articles by those who should, and some-
times do, know better.2 I offer it here as a mini-tutorial from the point of
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view of the intersection of decision theory and evolutionary game theory,
as a corrective to popular misconceptions and as an illustration of the
clarifying power of The Logic of Decision in this context.

2. Fitness. Let us suppose that individuals are paired some way or another
to play two-person games, that the population is large and that the payoff
to that game is reckoned in terms of Darwinian fitness. I will write the
property of playing the strategy A as italic A, and the property of being
paired with a player who plays the strategy A as boldface A. The fitness
of strategy B played against strategy A is determined by the game and is
written as Fit (B � Ai). These conventions should make for a compact
and easily understood notation provided that the typesetter cooperates.

If individuals are paired at random, then the expected fitness of a strat-
egy is calculated as an unconditional expectation:

Fitness (B) � SUMi pr (Ai) • Fit (B �Ai)

Because this resembles the way expected utility is calculated by Savage,
we will call this the Savage expectation. As a slogan:

RANDOM PAIRING r SAVAGE

On the other hand, pairing may not be random. There may be assortment
of encounters where a strategy is more likely to meet itself, or dissortment
of encounters where a strategy is less likely to meet itself, than would be
expected on the basis of random pairing. More generally, there may be
various kinds of correlation between strategies. In this case, to compute
the fitness of a strategy, we need to use conditional pairing proportions
instead of unconditional population proportions. As explained in Skyrms
(1994), this is like the computation of expected utility in The Logic of
Decision:

Fitness(B) � SUMi pr(Ai|B) • Fit (B � Ai)

The weights of the expectation are here the probabilities of being paired
with a strategy conditional on playing the strategy whose expected fitness
is being evaluated. As a slogan:

CORRELATION r JEFFREY

3. Altruism. Everyone knows that positive correlation—whatever the
cause—is the fundamental basis of the evolution of altruism. For example,
“correlation between interactants is necessary if altruism is to receive posi-
tive selection” (Hamilton 1975). Hamilton emphasizes that kin selection
is only one way of achieving this correlation:
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it makes no difference if altruists settle with altruists because they are
related . . . or because they recognize fellow altruists as such, or settle
together because of the pleiotropic effect of some gene on habitat
preference. (Hamilton 1975, 141; see also the discussion in Skyrms
1996 and in Sober and Wilson 1998)

Perfect self-correlation is perfectly transparent. It means that others do
unto you what you do unto them. The effects of less than perfect corre-
lation are quantified by the Jeffrey expectation.

4. Inclusive Fitness. When we use the Jeffrey expectation, we substitute
conditional probabilities for unconditional ones. Hamilton suggests an
alternative way of looking at the situation, where—at least on the sur-
face—it seems that we retain unconditional probabilities but modify fit-
nesses by adding a “correction factor” to get “inclusive fitness.” What is
Hamilton’s correction factor? In must be given by:

HAMILTON � JEFFREY � SAVAGE

This is always correct.

5. Inclusive Fitness? There are misleading characterizations of inclusive
fitness to be found, even in the writings of those who know better. For an
instance, consider Hamilton’s (1971) discussion of the Prisoner’s Dilemma
in “Selection of Selfish and Altruistic Behavior in Some Extreme Models”:

The implications of game-like situations in ecology are not so difficult
to see as the implications of the corresponding ‘game’ in game theory.
For example, if Prisoner’s Dilemma is played between individuals
meeting at random and if the payoffs are fitnesses, we have seen that
it ‘pays’ natural selection to take the selfish course consistently. This
is because the type that does so gets greater-than-average fitness when
associated with another type, in no matter what ratio. If assortation
occurs, however, this outcome is not certain; increasing correlation of
partners must eventually reach a point where fitness in the ‘homopairs’
dominates the mean fitnesses of the types. The concept of inclusive
fitness provides a simple test for the resolution of games in this way.
The test consists in adding to the expressed fitnesses a fraction b of the
fitness of the partner where b is the coefficient of relatedness of the
partner. (emphasis mine) The differences in the totals so formed are
differences in inclusive fitness. For example, if the partners are sibs

2 4 GIVES RISE TO 3 4 1/2
1 3 3 4 1/2

showing that with this degree of relationship the incentive to ‘let the
partner down’ has become zero. (1971, 69–70)
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One might conclude from reading only this that the emphasized sentence
is meant to give a general definition of inclusive fitness. We do find it used
as such in the literature, even though a careful reading of Hamilton (1964)
should have precluded this.

How does it compare with JEFFREY? Let us suppose that cooperation
is a new rare strategy in the population, so that we may approximate the
unconditional probability of meeting a cooperator as zero. In Hamilton’s
example, genetics is diploid and cooperation is dominant. The interactions
in question are with sibs. Then the probability of meeting a cooperator
given that you are one is equal to1/2, and the probability of meeting a
cooperator given that you are a defector is equal to 1. The JEFFREY
expectation of cooperation is 1/2*1 � 1/2* 3 � 2, and the JEFFREY
expectation of defection is 1*2 � 2. JEFFREY agrees that here cooper-
ation and defection has equal fitness.

But the logic of the revised fitness matrix is somewhat obscure. If you
interact with your brother, you cooperate and he defects, you add 1/2 his
fitness to yours presumably because he has probability 1/2 of carrying the
gene for cooperation. But he defected and the gene is dominant, so he does
not carry the gene! Shouldn’t the Hamilton correction term be added to
the expected fitnesses of the strategies, rather than to the individual terms
in the payoff matrix?

Furthermore, the Jeffrey expected fitnesses of magnitude 2 are less than
any term in Hamilton’s revised payoff matrix. If we compute the Savage
expectation of Hamilton’s revised payoff matrix, assuming that probabil-
ity of cooperation is zero, we get an expected fitness of magnitude 3 for
both cooperation and defection. This suggests some double counting in
Hamilton’s treatment, but it appears to be innocuous in that it does not
affect the qualitative conclusion that expected fitnesses are equal.

But what about a somewhat different payoff matrix, with the interac-
tions being between clones? Using the same procedure:

Defect 2 7 GIVES RISE TO 4 8
Cooperate 1 3 8 6

The modified payoff matrix is indicative of a game where evolution drives
a population to a mixed equilibrium. If most cooperate it is better to defect
and conversely. This is surely wrong, because if each always meets its own
type, cooperation always gets a higher payoff than defection.

6. Inclusive Fitness in 2 � 2 Games. We can resolve the puzzles noted in
the foregoing section by explicitly computing the Hamilton correction fac-
tor. For purposes of illustration consider the case in which there are only
two strategies, A1 and A2. Let the Fitness of A1 played against A1 be a
and the Fitness of A1 played against A2 be b. Then:
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JEFFREY(A1) � a pr(A1|A1) � b pr(A2|A1)

� a pr(A1) � b pr(A2) � a[pr(A1|A1) � pr(A1)]
� b[pr(A2|A1) � pr(A2)]

Let r be [pr(A1|A1) � pr(A1)]. Since pr(A2) � 1 � pr(A1) and
pr(A2|A1) � 1 � pr(A1|A1):

JEFFREY � SAVAGE � ar � br

or

HAMILTON � r(a � b)

Note the differences (a � b) in the treatment of payoffs and [pr(A1|A1)
� pr(A1)] in the relatedness term r. If pr(A1) and b are both equal to zero
we get simple special cases, but in general they will not be zero.

The analysis of the fitness of A2 is similar, with the appropriate payoffs
and conditional probabilities. Note that the r used for calculating the fit-
ness of A2 will typically not be the same as the r used in calculating the
fitness of A1. Even in the case of perfect assortation [ pr(A1|A1) �
pr(A2|A2) � 1] the appropriate r terms for calculating the expected fitness
of A1 and of A2 will be equal only if the population is equally split between
A1 types and A2 types.

The two r terms are not independent, because:

pr(A1) • pr (A2|A1) � pr(A1 � A2) � pr(A2 � A1) � pr(A2) • pr (A1|A2)

The middle inequality is a truth about pairing. For every player who plays
A1 and meets a player who plays A2, there is a player—the one he meets—
who plays A2 and meets a player who plays A1, and conversely. For
example, if both strategies have positive population proportions and one
has perfect self-correlation then the other must also.

7. Examples Explained. The foregoing examples can now be treated cor-
rectly and the apparent difficulties dissolve. Hamilton gets too high a value
for the fitnesses because he multiplies r times absolute payoffs rather than
differences in payoffs. Various problems are avoided because of the special
nature of the example. If cooperation is a rare mutant, r for cooperation
can be 1/2 but r for defection is zero. The fitness of Defection is just its
Savage fitness, which is equal to 2. The Savage fitness of cooperation is
equal to 1 and the Hamilton correction factor is (3 � 1)(1/2 � 0) � 1,
so its fitness is also equal to 2.

The second example also ceases to be mysterious if we use differences
in computing the Hamilton correction factor. In this example, Savage
fitness of defection and Savage fitness of cooperation is 3. If almost all of
the population cooperate, r for cooperation is zero and then the Hamilton
correction factor for cooperation is also zero. But the coefficient r for
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defection is equal to 1 and the Hamilton correction factor for defection is
�5. Thus the fitness of defection is 2 and that of cooperation is 3 (as we
already know from direct computation) and the misleading implications
of the modified payoff matrix:

Defect 4 8
Cooperate 8 6

do not arise.

8. Jeffrey’s Hamilton’s Rule. Suppose that we have an interaction that can
be put in this special form:

Defect Cooperate
Defect base base � benefit
Cooperate base � cost base � cost � benefit

We would like to know when the fitness of cooperation exceeds that of
defection.

As a consequence of the special nature of the model, the Savage fitness
of defection exceeds the Savage expected fitness of cooperation by the cost
of cooperation, no matter what the population proportions. If the fit-
ness of cooperation is to exceed that of defection, this deficit must be made
up by the respective Hamilton correction factors.

The Hamilton correction factor for cooperation gives an increment in
fitness of:

[pr(C|C) � pr(C)] benefit

and the Hamilton correction factor for defection gives a decrement of
fitness of:

[pr(D|D) � pr(D)] benefit

so the Jeffrey fitness of cooperation exceeds that of defection just in case:

[pr(C|C) � pr (C) � pr(D|D) � pr(D)] benefit � cost

The probabilistic quantity in brackets reduces to [pr(C|C) � pr(C|D)] ,
which we denote by R. (In the case where cooperation is rare, R is ap-
proximately equal to the r in the Hamilton correction factor for cooper-
ation.) Thus, cooperation has greater fitness and can spread if:

R(benefit) � cost � 0.

This is Hamilton’s rule. The Logic of Decision forces us to make explicit
its assumptions.
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9. Conclusion. In evolutionary game theory, the real players are the strat-
egies. Strategies persist, while individuals come and go. One can, without
doing much harm, think of the average fitness of a strategy as the average
fitness of the average individual using that strategy. From this point of
view Hamilton (1964) computes this average individual’s inclusive fitness
by taking her real fitness, subtracting off the increment in expected fitness
she got from the cooperation of others, and then adding in the increment
in expected fitness she contributed to them (using all the time the proper
coefficients r). But here the terms subtracted off and the terms added in
are equal! They are both the Hamilton correction factor. This is because
only strategies have an identity. If we both are average cooperators, the
good I do you must be equal to the good you do me.

We start with Jeffrey expected fitness, subtract off the Hamilton cor-
rection factor to get Savage expected fitness, and add on the Hamilton
correction factor to get Jeffrey expected fitness back again. Old-fashioned
expected fitness and inclusive fitness are one and the same. Hamilton (1964)
intended just this. Inclusive fitness is not supposed to have a different
value, but rather is another way of computing the same value. It has a
certain individual altruistic flavor that appealed to Hamilton:

In essence what I had come to see was the simplification to be effected
by attacking the problem from two new points of view. One was sim-
ply the ‘gene’s eye’ . . . But, at least as we humans perceive the matter,
it is not our genes but we . . . that make the decisions, so I had been
delighted to find something approaching an individualistic view that
I could justify for whole genotypes and which could serve as a guide
to social adaptation. This was the idea of inclusive fitness. (Hamilton
1996, 27)
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