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Evolution in Lewis Signaling
Games

“The emergence of meaning is a moral certainty”

Brian Skyrms, Evolution of the Social Contract

“Something is morally certain if its probability comes so

close to complete certainty that the difference cannot be

perceived.”

Jacob Bernoulli, The Art of Conjecture

That was the bold claim I made in 1996 about the evolution of

signaling systems. Signaling systems had been shown to be the only

evolutionarily stable strategies in n-state, n-signal, (and here) n-act

signaling games. They were the only attractors in the replicator

dynamics. In simple cases, like those discussed in Chapter 1, it was
clear why almost every possible starting point was carried to a

signaling system. How far do these positive results generalize?

The good news

Consider the two-state, two-signal, two-act, signaling game where

nature chooses the states with equal probability. In Chapter 1, we
restricted the strategies to those that might be used by those who

have signaling in mind. The sender sent a different signal in each

state. The receiver picked a different act for each signal. They knew



at the onset that states and signals were important, they just hadn’t

settled on a signaling system. This is making things too easy. Let’s

put in all possible strategies.

Senders now have two additional strategies: Always send signal 1,
always send signal 2. Receivers also have two additional strategies:

Always do act 1, always do act 2.
The sender’s strategies ignore the state and the receiver’s strategies

ignore the signal.Why not?Wemay have a population of senders and

a population of receivers. In this case there are four possible strategies

represented in each population. Alternatively, there may be a single

population where an individual is sometimes in the role of sender and

sometimes in the role of receiver. A strategy for an individual specifies

what to do when in the role of sender and what to do in the role of

receiver. There are 16 possible strategies. What happens?

Everything still works fine. Signaling always evolves, both in

one-population and two-population contexts. We can’t draw pic-

tures with all the strategies included, but it is still possible to

establish that almost every initial point is carried to a signaling

system.1 It can be shown that average payoff increases along every

trajectory of the dynamics. Then there can’t be cycles like those in

rock-scissors-paper. Evolutionary dynamics has to go to an equi-

librium. But there are lots of new equilibria when we include all

strategies. Notably, there are pooling equilibria, in which the sender

ignores the state and the receiver ignores the signal. However, it

can be shown that all the equilibria other than signaling systems are

dynamically unstable. Evolution won’t hit them. There are no

pictures, but the story is just like that in Chapter 1.

Bad news: states with unequal probabilities

The foregoing is in the context where nature chooses states with

equal probability. That is the simplest case, but there is no reason

1 Huttegger 2007a; Hofbauer and Huttegger 2008.
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why nature may not choose states with unequal probability: 60%–
40%, 90%–10%, or 99%–1%. Then the pooling equilibria take the

form where senders transmit no information and receivers ignore

the signal and always do the act suited to the most likely state.

If the more likely state is very likely, players in such an equilibri-

um may do quite well. We can no longer make the case that the

mutant signalers will do as well against the natives as the natives do

against each other. If both signals are sent at random (but ignored by

receivers) in the native population, then mutants pursuing a signal-

ing system strategy will be led to do the wrong act half the time,

when they receive a native’s signal. They will do perfectly against

each other, but most of their interactions are with natives. So they

make lots of mistakes, while the natives usually do the right thing.

They will do worse than the natives.

For a two-population setting, consider a case where state 1 occurs
90% of the time and state 2 10%. Then a receiver who always does

act 1, no matter what the signal, gains average payoff of .9. He does

the right act for the state 90% of the time andmisses 10% of the time.

So he does reasonably well without any information transmission.

Consider such a population of receivers paired with a polymorphic

population of senders, half of whom always send signal 1 and half of
whom always send signal 2. Everyone gets an average payoff of .9.
Introduce a few senders who discriminate states, and they will do no

better and no worse than the natives. But if we introduce a few

receivers who discriminate between signals to coordinate with the

few senders, they will do very badly against the natives. Against the

natives they will get an average payoff of only .5. That was good
enough to get a foot in the door when the states were equiprobable

and the natives were making .5, but it is not good enough when the
states are not equiprobable. Now evolutionary dynamics will some-

times hit signaling systems and sometimes hit pooling equilibria,

with the likelihood of the latter increasing with the disparity in

probability between the states. The bottom line in both the one-

and two-population cases is that evolution of signaling is no longer

guaranteed. How serious is this problem?
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Evolution can lead to pooling equilibria where no information is

transmittedwhenever states have unequal probability. It can also lead

to signaling systems. It is more likely that we get pooling the larger

the disparity in probabilities of the states, but the impact on the

welfare of the players is smaller.

Some good news

Our pooling equilibria, where no information is transferred are

characterized by (i) the receivers ignoring the signal and always

doing the right thing for the most probable state and senders

ignoring the state, either by (a) always sending signal 1 or (b) always
sending signal 2. Any mix of senders of types (a) and (b) gives us

a pooling equilibrium. Thus there is a line of such equilibria,

corresponding to the proportion of the two types of sender. The

endpoints, representing all one type of sender or all the other type,

are unstable. Each endpoint can be destabilized by a few signaling

system mutants, of an appropriate kind. But evolution can lead to

any of the other points corresponding to a mixed population of

different types of senders.

A line of equilibria is structurally unstable, like the concentric

orbits in the rock-scissors-paper example of the last chapter. A

small change in the dynamics can make a big change in the set of

equilibria. So far the dynamics have been pure differential repro-

duction. We can modify the dynamics a little bit by putting in a

little natural variation in the form of mutation.

The analysis for two populations has been carried out by Josef

Hofbauer and Simon Huttegger. The replicator dynamics is re-

placed with its natural generalization, the replicator-mutator dynam-

ics.2 Each generation reproduces according to replicator dynamics

but (1-e) of the progeny of each type breed true and e of the

progeny mutate to all types with equal probability. (Self-mutation

2 Hadeler 1981; Hofbauer 1985.
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is allowed.) Taking the continuous time limit gives the replicator-

mutator dynamics.

A little uniform mutation (no matter how little) collapses the line

of pooling equilibria to a single point. (This is intuitively reason-

able. If the receivers are disregarding the signals, there is no selec-

tion pressure on the senders. If one type of sender, (a) or (b), is more

numerous, more mutate out than mutate in.) The big question

concerns the character of this one point. Is it an attractor that pulls

nearby states to it? Is it dynamically unstable, so that for all practical

purposes we needn’t worry about it?

It depends. For states whose probabilities are not too unequal,

this pooling point is unstable. Then our original positive result is

restored. Signaling always evolves! That’s the good news. But for

when one state is much more probable than the other, the pooling

point is an attractor. Signaling sometimes evolves, sometimes not.

That’s the not so good news. For equal and small mutation rates for

both senders and receivers, Hofbauer and Huttegger calculate the

probability where the switch takes place.3 It is between .78 and .79.
That’s not too bad. Up to probability 3/4, a little mutation

assures that almost all initial points evolve to signaling systems.

Things are even more favorable, if the receivers have a higher

mutation rate than the senders. If receivers experiment twice as

often as senders, paradise is regained. The bad equilibrium with no

information transfer is always dynamically unstable, for any (posi-

tive) state probabilities. But we cannot assume that such favorable

mutation rates are always in place.

In addition,we should notice that these are results for payoffs that are

all 0 for failures and all 1 for successes. For very infrequent states where
the payoffs are much more important—such as the presence of a

predator—the disparity in payoffs can balance the disparity in prob-

abilities. Predators may be rare, but it does not pay to disregard them.

This consideration can restore almost sure evolution of signaling

for rare events.

3 Technically, this is called a “bifurcation.”
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More bad news: partial pooling

What happens when we move to three states, three signals, and three

acts?We go back to the favorable assumption that all states are chosen

with equal probability. Nevertheless, a whole new class of equilibria

appears. Suppose that a sender sends signal 1 in both states 1 and 2, and
in state 3 sends either signal 2 or 3 with probabilities x and (1–x)
respectively. And suppose that the receiver, on getting signals 2 or 3
always does act 3, but on getting signal 1 does either act 1 or act 2with
probabilities y and (1-y) respectively. This is shown in figure 5.1
For any combination of values of x and y as population propor-

tions, including 0 and 1, we have a population state that is a

dynamic equilibrium. We thus have an infinite set of equilibrium

components. Considering x going from 0 to 1 and y going from

0 to 1, we can visualize this set as a square of equilibria. These

equilibria pool states 1 and 2 together, but do not pool all states

together—so they are called partial pooling equilibria.4 Because

information is imperfectly transmitted, sender and receiver succeed

2/3 of the time. In comparison, total pooling would give a payoff of

only 1/3, and perfect signaling would give a payoff of 1.

3 by 3 by 3
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Figure 5.1: Partial pooling equilibria.

4 There is likewise a square of partial pooling equilibria that lumps states 2 and 3 together,
and one that pools states 1 and 3.
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In total pooling equilibria, where all states are lumped together,

no information is transmitted. In partial pooling equilibria, some

information is transmitted, but not as much as would be in a

signaling system.

If we run simulations of evolutionary dynamics in 3 state, 3 signal,
3 act Lewis signaling games with equiprobable states, we never

observe total pooling equilibria, but we do see partial pooling

between 4% and 5% of the time.5 How is this possible? Are these

simulations to be trusted?

There are four possible pairs of pure populations corresponding

to values of 0 or 1 for x and y. Each of these population states is a

dynamically unstable equilibrium.6 But mixed populations,

corresponding to non-extreme values of x and y, are all stable

equilibria. Notice that in any of these states, signaling-system in-

vaders would do worse against the natives than the natives do

against themselves. Likewise for any other invaders. You can go

through all of the other possible other sender and receiver strate-

gies, and none of them do as well against a mixed pooling popula-

tion as the poolers do against themselves. If you are close enough to

the interior of the plane of partial pooling equilibria, the dynamics

will lead you right into it. The simulations were a reliable guide.

A non-trivial set of population proportions evolves by replicator

dynamics to partial pooling rather than signaling systems.7 In a

perfectly ordinary Lewis signaling game, evolution can sometimes

spontaneously create the synonyms and information bottlenecks

that we artificially postulated in Chapter 1!8

5 Simulations using discrete time replicator dynamics by Kevin Zollman led to partial
pooling in 4.7% of the trials, and to signaling systems the rest of the time.
6 The instability stems from the fact that if a small number of senders and receivers that

form the right signaling system were added they would out-compete the natives. They
would do equally well against the natives, but better against each other. But each of these
partial-pooling type populations requires a different signaling system to destabilize it, and
each of these signaling systems does badly against the other type of partial-pooling.
7 There are proofs of this in Huttegger 2007a and in Pawlowitsch 2008.
8 Signals 2 and 3 function as synonyms, leaving only one signal for the remaining two

states and two acts.
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Mutation one more time

The set of partial pooling equilibria in the foregoing discussion is

again an indication of structural instability. As before, let us try a little

mutation. It is hard to do a full analysis of this game, but indications

are that a little mutation destroys partial pooling and always gets us

signaling. Partial pooling squares collapse to single points and move

a little bit inward to accommodate a few mutants of other types.

Although these equilibria of partial information transfer survive,

they are dynamically unstable. Perturbed signaling systems, in con-

trast, are asymptotically stable attractors. Simulations using discrete-

time replicator-mutator dynamics with both 1% and 0.1%mutation

rates found that the system always converged to a (perturbed)

signaling system equilibrium.

Correlation

In the last chapter, assortment of encounters made a cameo appear-

ance. Assortment of encounters—that is, positive correlation of

types in encounters—plays the major role in explanations of the

evolution of altruism. Altruism, modeled as cooperation in the

Prisoner’s Dilemma, cannot evolve with random pairing. But it

can when there is sufficient positive correlation of types, so that

cooperators tend to meet cooperators and defectors tend to meet

defectors.9Mechanisms exist in nature to promote an assortment of

encounters. There is no reason to believe that they should operate

only in Prisoner’s Dilemma situations.

They can make a difference in evolution of signaling. Let us go

back to a Lewis signaling game with two states, two signals, and two

acts, where nature chooses state 1with probability .2 and state 2with

9 See Hamilton 1964; Skyrms 1996; Bergstrom 2002.
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probability .8. Here we consider a one-population model, in which

nature assigns roles of sender or receiver on flip of a fair coin. We

focus on four strategies, written as a vector whose components are:

signal sent in state 1, signal sent in state 2, act done after signal 1, act
done after signal 2.

s1¼<1, 2, 1, 2>
s2¼<2, 1, 2, 1>
s3¼<1, 1, 2, 2>
s4¼<2, 2, 2, 2>

The first two strategies are signaling systems, the others are pooling

strategies. (Other strategies neglected here are losers that rapidly go

extinct.)

Consider the following model of assortment (due originally to

Sewall Wright):

Probabilityðsi meets siÞ ¼ pðsiÞ þ e½1& pðsiÞ'

Probabilityðsi meets different sjÞ ¼ pðsjÞ & e pðsjÞ

where p denotes population proportion. The probability of en-

countering your own type is augmented and that of encountering a

different type is decremented. If e¼1, assortment is perfect; if e¼0
encounters are random.

Now consider the point, z, in the line of pooling equilibria

where p(s3)¼p(s4)¼.5.
This point is stable. (It is, in fact, the point on the line with

strongest resistance to invasion by signalers.) We feed in assortment.

Between e¼.4 and e¼.5, z changes from being stable to unstable.

This happens at about e¼.45. If probabilities of states are more

unequal, it takes greater correlation to destabilize pooling and

guarantee the evolution of signaling. This is shown in figure 5.2.
But if neither state is certain, there is always some degree of

correlation that will do the trick.
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This shows the power of correlation in the abstract. It remains to

investigate the effect of specific correlation devices on the evolu-

tion of signaling.10

Eating crow

Even after all the good news is in, there remains a real possibility of

evolution falling short of a signaling system. The emergence of

a signaling system is not always a moral certainty. I was wrong.

But signaling can still often emerge spontaneously, even though

perfect signaling is not guaranteed to always emerge. Democritus is

still right, but we can begin to see the nuance in how he is right.

10 One correlation mechanism found widely in nature is local interaction in space, or in
some social network structure. Wagner 2009 shows how network topology influences
evolution of signaling systems.
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Figure 5.2: Assortment destabilizes pooling.
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