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1. Introduction

Some explanations are deep and powerful: Newton’s explanation of the
tides, Maxwell’s explanation of the propagation of light, Einstein’s explan-
ation of the advance of the perihelion of Mercury. Other explanations, while
deserving of the name, are superficial and shallow: Bob lashed out at Tom
because he was angry, the car accelerated because Mary depressed the gas
pedal with her foot, the salt dissolved because it was placed in water. We
take this intuition to be very natural and widely shared. Yet in the vast
philosophical literature on explanation, there have been precious few
attempts to give any systematic account of this notion of explanatory
depth. In this paper, we will provide such an account from within the
framework of the manipulationist account of explanation presented in a
companion paper (Woodward and Hitchcock 2003, hereafter referred to
as EG1; see also Woodward 1997a, 2000).
We believe that the absence of any adequate theory of explanatory depth

is no accident. According to most theories of explanation, explanations
appeal (at least tacitly) to generalizations of some sort. For example, in
Hempel’s Deductive-Nomological (D-N) theory of explanation (Hempel
and Oppenheim 1948, Hempel 1965a), explanations must appeal to true,
lawlike generalizations—i.e., to laws. A generalization is a proposition that
is general in the following sense: it describes more than just the actual
properties of the particular system that is the focus of explanation. This
suggests a natural approach to the problem of explanatory depth: an
explanation is deeper insofar as it makes use of a generalization that is
more general. We will ultimately endorse a version of this strategy. We will
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argue, however, that traditional approaches to explanation have been
unable to exploit this strategy because they have focused on the wrong
sort of generality: generality with respect to objects or systems other than
the one that is the focus of explanation. The right sort of generality is rather
generality with respect to other possible properties of the very object or
system that is the focus of explanation.
The importance of this sort of generality follows from the claim that

explanation has to do with the exhibition of patterns of counterfactual
dependence describing how the systems whose behavior we wish to explain
would change under various conditions. This claim is articulated and
defended in detail in EG1; we present a brief overview in section 2. In
section 3, we provide our account of explanatory depth in terms of the
range of invariance of a generalization. In particular, we describe a number
of different ways in which one explanation may be deeper or more powerful
than another. In the remaining sections, we explore the differences between
our account and two other influential treatments of explanation:1 Kitcher’s
unificationist account (Kitcher 1981, 1989) and Lewis’s causal account
(1986a). We argue in particular that neither theory provides an adequate
account of the notion of explanatory depth.

2. Explanatory Generalizations

An explanation has the following canonical form:

(1) X1¼ x1, . . . ,Xn¼ xn

Y¼ g(X1, . . . ,Xn)
;Y¼ y¼ g(x1, . . . , xn).

The first two lines comprise the explanans, the final line the explanandum.
X1, . . . ,Xn are the explanans variables, and Y the explanandum variable.
A variable is a determinable property of an object or system: its mass, its
electric charge, whether it is a raven, etc. The second line expresses a
relationship between the explanans and explanandum variables; it is what
we call the explanatory generalization of explanation (1). We impose two
further constraints upon an explanation. First, the assignments of values to
the explanans and explanandum variables must be true (or approximately
true) of the object or system in question. Second, the explanatory general-
ization must be invariant under testing interventions. In order for a general-
ization to be explanatory in our sense, it need not be a law, and indeed it
need not be an exceptionless regularity. There may be other systems of the
type in question for which Y 6¼ g(X1, . . . ,Xn); there may even be systems
such that X1¼ x1, . . . ,Xn¼ xn and Y 6¼ y.
In EG1, we provide a detailed account of what it means for a general-

ization to be invariant under testing interventions. The basic idea is that
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there must be some true counterfactuals of the following form: if it had been
the case that X1¼ x1

0, . . . ,Xn¼ xn
0, then it would have been the case that

Y¼ y0 ¼ g(x1
0, . . . , xn

0) 6¼ y. (If y¼ y0, then we say that the relevant interven-
tion was not a testing intervention.) These counterfactuals are non-
backtracking counterfactuals in the sense of Lewis (1979). We do not,
however, endorse Lewis’s account of such counterfactuals in terms of a metric
of similarity over possible words that is characterized in terms of big and
small ‘miracles’. Rather, the counterfactuals are to be thought of as describ-
ing hypothetical situations in which the antecedents are made true by
idealized interventions or manipulations of the explanans variables. It is
precisely these sorts of idealized interventions that we aim to approximate
when we conduct controlled experiments. The key feature of such interven-
tions is that they do not exert any causal influence on the explanandum
variable Y except through their effect, if any,2 on the explanans variables.
Explanatory generalizations allow us to answer what-if-things-had-been-

different questions: they show us what the value of the explanandum vari-
able depends upon. For example, suppose that the height (Y) of a particular
plant depends upon the amount of water (X1) and fertilizer (X2) it receives
according to the following formula:

(2) Y¼ a1X1þ a2 X2þU

where U reflects unknown sources of error. (2) will fall far short of the
normal standards for being a law of nature. Nonetheless, suppose that for
some �X1 and �X2 (2) correctly ‘predicts’ that if X1 and X2 had been
changed by those amounts, then the height of the plant would have changed
by (approximately) the amount a1�X1þ a2�X2. Then (2) would qualify as
explanatory according to our account, since it gives us information about
how the height of the plant depends upon the amount of water and fertilizer
that it receives.

3. Degrees of Invariance and Explanatory Depth

We argued in EG1 that the traditional distinction between laws and acci-
dental generalizations does not do justice to the role played by general-
izations in explanation. Moreover, the traditional distinction involves an
exhaustive dichotomy of true generalizations—a true generalization is
either a law, in which case it is explanatory, or it is accidental, in which
case it is not explanatory. There are no other possibilities. However, expla-
natory generalizations may differ in degree of invariance. For example, the
range of conditions over which the regression equation (2) is invariant is
intuitively rather narrow in comparison with fundamental physical laws. An
initial step in the right direction thus would be to abandon the law/accident
dichotomy, and replace it with an alternative framework that involves a
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threshold above which there is a continuum that admits of degrees. Among
those generalizations that are invariant, some will be more invariant than
others, and they will correspondingly provide deeper explanations. For
example, the low-level generalization (2) relating water and fertilizer to
plant height strikes us as explanatory, but only minimally so: the explan-
ations in which it participates are shallow and relatively unilluminating. If
we had a theory—call it (T)—describing the physiological mechanisms
governing plant growth it would provide deeper explanations. Such a theory
would presumably be invariant under a wider range of changes and inter-
ventions than (2); that is, we would expect (T ) to continue to hold in
circumstances in which the relationship between height, fertilizer and
water departed from the linear relationship (2). In just the same way, the
van der Waals equation will be invariant under a wider range of interven-
tions than the ideal gas law and hence will be more explanatory, General
Relativity will be more explanatory than Newtonian gravitational theory,
and so on.
Note that this explanatory spectrum will not necessarily be one that

extends from accidental generalizations at one extreme, to laws at the
other. As we argued in EG1, some generalizations that have traditionally
been considered laws are not genuinely explanatory. Moreover, the trad-
itional distinction between laws and accidental generalizations applies only
to exceptionless generalizations. Treating these two categories as endpoints
of an explanatory continuum thus falsely suggests that only exceptionless
generalizations make it into the continuum at all. As we argued in EG1,
exceptionlessness is not necessary for a generalization to be explanatory.3

We have been speaking thus far in an informal way of one generaliza-
tion’s being ‘more invariant’ and hence figuring in deeper explanations than
another. We turn now to a more systematic exploration of what this might
involve. Let G be a generalization that includes X as one of its explanans
variables, and suppose that G is invariant under interventions on the value
of X within the range R. Suppose that G0 is a different generalization, that
purports to explain the same outcome. Then the following are ways in which
G0 might be more invariant than G.
1. G0 also includes X as an explanans variable, and is invariant under

interventions on X within range R, but G0 yields more accurate values for
the explanandum variable within that range (even though, ex hypothesi,
G was ‘approximately true’ within this range). This type of improvement
is often achieved, for example, by an increase in the accuracy of measurement
of a physical constant. Consider the following rendering of Galileo’s law of
free fall (G): h¼ (4.9m/s2)t2, where h is the height (in meters) from which the
object in question falls, and t is the time (in seconds) that it takes to fall. A
generalization (G0) that uses a more accurate value for the acceleration field
in some particular location will improve upon G in just the way described.
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2. As before, G0 includes X, but it is invariant under interventions on X
within range R0, which strictly contains R. In this case, G0 is invariant under
interventions on X that G is not invariant under.
It might be natural to regard the first type of improvement as an

improvement in accuracy, which is an explanatory virtue distinct from
depth; while regarding the second type of case as an increase in invariance
per se. Note, however, that these two cases frequently occur together. For
example, Newton’s laws are highly accurate for low velocities; that is,
Newton’s laws, when applied to some object with a velocity that is very
small compared to that of light, will be invariant under a range R of
interventions on that velocity, so long as R includes only relatively small
values of velocity. The special relativistic correction to these laws has two
interrelated effects: the new generalizations are more accurate within R
(even though Newton’s laws were ‘approximately true’ here); and they are
invariant under a wider range of interventions on the velocity of the object
in question.
3. The case is somewhat more complicated if G and G0 have ranges of

invariance for X that are partially or totally disjoint. If the actual values of
the variables fall within the range of invariance of both G or G0, it may be
reasonable to prefer G0 if it is more accurate within the region of overlap, or
if the actual values of the variables fall more squarely within the range of
invariance for G0. For example, if G is invariant under interventions that
lower the value of X, but not under interventions (or under very few
interventions) that raise the value of X, whereas G0 is invariant under
interventions that both raise or lower the value of X, then it may be reason-
able to prefer G0 to G.
4. G will be explanatorily deficient if its range of invariance R is too

disjoint. Consider for example, Galileo’s law of free fall (G0) that relates the
amount of time it takes an object to fall to earth to the height from which it
was dropped: h¼ at2. Now consider the following ‘Goodmanized’ version of
this law (G): hþ (h� h0)(h� h1) . . . (h� hn)¼ at2. Suppose that the object
whose time of fall we wish to explain was in fact dropped from a height
of h0. Then this new relationship will be invariant under testing interven-
tions that change the value of h to h1, . . . , hn. In this case, we are inclined to
conclude not merely that G is less explanatory that G0, but that G is not
explanatory at all. The problem lies in the disjoint nature of the set of values
of h for which (G) holds. In order to get to a testing intervention under
which (G) is invariant, we must ‘skip over’ a set of testing interventions
under which (G) is not invariant. Any sufficiently wildly oscillating function
of X is bound to hit the right values of the explanandum variable at a
number of points; that should hardly lead us to accept such a function as
explanatory. Such a generalization is rather like the broken watch that has
the dubious virtue of telling exactly the right time twice per day.
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A natural way of handling this sort of case would be to require that an
explanatory relationship be invariant under all testing interventions that
change the values of variables to new values within some neighborhood of the
actual values. We might say that such a relationship is stable for the actual
values of the variables that figure in it. (G) fails because any neighborhood
of h¼ h0 will contain values of h such that (G) is not preserved when h is set
to those values by interventions.
5. It may the case that whether G continues to hold under changes that

set X equal to x depends not merely upon whether x is in R, but upon how X
is set to x. There are two different types of case—or perhaps two different
ways of thinking about the examples—that fall into this category. In the
case of some generalizations, some ways of changing the value of X may not
count as interventions at all, roughly because causal features of the process
by which the value is brought about exert an independent effect on the
explanandum variable in G. This would be the case, for example, if the
water received by a plant was delivered by a high pressure hose in a way that
damaged the plant and disrupted (2). Cases of this sort are not cases in
which (2) fails to be invariant under an intervention, since this sort of
delivery of water fails to qualify as an intervention; but they nonetheless
indicate that the range of interventions under which (2) is invariant is
restricted in a certain way.
In other cases, we may be willing to regard various manipulations that fix

the value of X within the range R as interventions, but the relationship R is
invariant for only some such interventions. For example, it is clear that
whether (2) holds will be sensitive to the way in which water is delivered
over time: a hypothetical manipulation that dumps large quantities of water
on the plant on the last day of the growing season will not cause the plant to
become dramatically taller, and will have a quite different effect on height
than a manipulation that consists in providing the plant with the same total
amount of water but in a way that is distributed more evenly over the
growing season. Here we may wish to regard both manipulations as inter-
ventions and say that (2) is invariant under the second sort of intervention
but not the first. Intuitively, the variables figuring in the generalization are
genuine causes of the plant’s height, but they are too ‘coarse-grained’ for (2)
to be invariant under a wide range of interventions on those variables.
The boundary between these two sorts of cases is quite fuzzy; typically,

however, little will turn on whether specific examples are assimilated to one
or to the other. Both of the above examples indicate restrictions on the
range of interventions under which (2) is invariant, and it matters little
whether we think of these restrictions as arising because interventions exist
under which (2) fails to be invariant or whether we instead think of various
changes which would disrupt (2) as failing to qualify as interventions. In
either case, it is clear that we could improve upon the original generalization
(2) by replacing it with a generalization that is less sensitive to the way in
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which the values of the variables figuring in it are changed; such a general-
ization will be invariant under a wider range of interventions than (2). For
example, we might replace the variable X1 (total amount of water) with a
series of variables representing the amount of water received by the plant
during each week of the growing season. This revised generalization would
reflect, for instance, the differential effects of water earlier in the growing
season rather than later, the effects of long periods without water, and so
on. Ideally, one would like to formulate generalizations that are not sen-
sitive at all to the ways in which the values of the variables figuring in them
are produced.
6. Even though G may be invariant under some range of interventions on

the variables figuring in that relationship, it may be highly sensitive to
background conditions, such that it would fail to hold if they were changed
in a number of ways. If G0 is less sensitive to background conditions, then
we might be inclined to view G0 as more explanatory than G.
While intuitively plausible, this suggestion raises a puzzle. In EG1

we distinguished between invariance under changes in the value of
a variable figuring in a generalization, and invariance under changes in
background conditions, and concluded that the latter sort of invariance
did not suffice for even minimal explanatory power. The problem was that
any generalization (that is true or approximately so of the system at hand)
will be invariant under a great many changes in background conditions
(such as changes in the price of tea in China). So there appears to be a
tension (although not an outright contradiction) between two claims: invari-
ance under changes in background conditions does not render a general-
ization explanatory; yet greater invariance under changes in background
conditions can render one generalization more explanatory than another.
We resolve this tension by claiming that all interesting cases of this type can
be assimilated to case 7 below. Briefly, if G is sensitive to changes in back-
ground conditions, that is because it has left out some variable(s) upon
which the explanandum variable depends; whereas if G0 holds under a
variety of background conditions, that will be because G0 has already incorp-
orated many of the relevant variables into the generalization.
7. G0 makes explicit the dependence of the explanandum on variables

treated as background conditions by G. For example, Galileo’s law of free
fall (G) expresses a relationship between the height from which an object is
dropped and the time it takes to fall. This generalization is invariant under
some interventions on the height from which the object is dropped, but it
would fail to hold if the object were dropped from a height that is large in
relation to the earth’s radius or if it were dropped from the surface of a
massive body of proportions different from those of earth (such as Mars).
Newton’s second law together with his law of gravitation entail a general-
ization (G0) that also allows us to compute the time it would take an object
to fall a certain distance. (G0), however, is not restricted in the way that
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Galileo’s law is: it will remain invariant under changes in the mass and
radius of the massive body upon which the object is dropped. It achieves
this greater range of invariance by explicitly incorporating the mass and
radius of the planet (or whatever) into the generalization as variables.4

As a second example, consider the Hardy-Weinberg law of population
genetics, which shows how the population frequencies of genotypes in one
generation depend upon the frequencies of the individual genes (alleles) in
the previous generation. This ‘law’ only holds under a very restrictive set of
assumptions: there must be no migration into or out of the population and
no mutation, there must be random mating, random assortment of genes
during meiosis, and no difference in reproductive fitness conferred by the
genes. Population genetics allows for the construction of more complex
equations that show how the population frequency of genotypes can depend
upon factors other than initial gene frequencies, factors such as migration,
mutation, meiotic drive, fitness, and so on.
In these sorts of cases, claims about the invariance of a relationship under

changes in background conditions are transformed into claims about invari-
ance under interventions on variables figuring in the relationship through the
device of explicitly incorporating additional variables into the relationship.
For example, an intervention that increases the mass of the earth would
count as an intervention on background conditions with respect to Galileo’s
law, but as an intervention on a variable explicitly figuring in Newton’s laws.
This is, perhaps, the most fundamental way in which one generalization can
provide a deeper explanation than another. At the heart of explanation is
showing what the explanandum depends on. If an explanandum depends on
some variable, a generalization that explicitly describes this dependence
achieves this aim more fully than a generalization that does not make this
dependence explicit.
Note that the various ways in which one generalization may be deeper

than another may sometimes compete—explanatory depth is not one-
dimensional. Consider, for example, the relationship (2) between the height
of a plant and the amount of water and fertilizer it is given. There may well
be deeper theories of plant growth that exhibit the dependence of the plant’s
height on a great many other variables besides. It may be, however, that
these deeper theories do not exactly reproduce (2) when the appropriate
boundary conditions are specified. In other words, there may be a tension
between the desiderata for accuracy (case 1) and explanatory depth (case 7).
It is often the case in the biological and social sciences that low-level
generalizations that are formulated primarily on the basis of straightfor-
ward inductive evidence are more accurate within their respective domains
than are the deeper explanatorily generalizations of those fields. We see this,
for example, in the contrast between old-fashioned institutional economics
which is often descriptively accurate but explanatorily very shallow, and
modern industrial organization theory, which is much more illuminating
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from the point of view of explanation but abstracts from details of par-
ticular firms and markets in a way that sacrifices descriptive accuracy.
Cartwright (1983) contains a sustained defense of this position for the
generalizations of physics. Cartwright distinguishes between phenomeno-
logical laws—such as laws describing the exponential decay rates of unstable
isotopes—which are formulated primarily on the basis of direct experi-
mental evidence, and fundamental laws such as Schrödinger’s equation
which are thought to have deep explanatory power. She argues that
phenomenological laws are never merely the result of applying boundary
conditions to fundamental laws: so-called derivations of phenomenological
laws from fundamental laws always involve empirical idealizations, such as
ignoring all but a finite number of factors that contribute to a system’s
Hamiltonian, and mathematical approximations such as discarding small
terms in infinite sequences and substituting tractable equations for intract-
able ones. Thus the result of applying a fundamental law to some particular
system is often less descriptively accurate than an empirically derived phe-
nomenological law. Whether or not this is a correct account of general-
izations in physics, Cartwright is correct in thinking that the demands for
accuracy and for explanatory depth can sometimes pull in quite different
directions.
Our account of the variety of ways in which one generalization may be

more invariant than another allows us to understand better why the trad-
itional nomothetic approach to explanation has been unable to provide an
adequate account of explanatory depth. As we argued in EG1, the nomo-
thetic approach has focused on a particular kind of generality: generality
with respect to objects or systems other than the one whose properties are
being explained. This type of generality is ill-suited to the project of develop-
ing a systematic account of explanatory depth for a number of reasons.
First, there is a technical difficulty. Laws, as traditionally understood, are

universal generalizations. This means that a law asserts that a particular
material conditional holds of everything. In this regard, it is hard to see how
one explanatory generalization could be more general than another.
A natural response to this problem is to suggest that every law has a certain
‘scope’, a set of objects or systems that fall under the antecedent of the law.
We could then say that one law is more general than another if it has a wider
scope.
The difficulty with this suggestion is that scope has little to do with the

aims of explanation as articulated by Hempel. Hempel writes:

. . . a D-N explanation answers the question ‘Why did the explanandum-

phenomenon occur?’ by showing that the phenomenon resulted from certain

particular circumstances, specified in C1, C2, . . .Ck, in accordance with the laws

L1, L2, . . .Lr. By pointing this out, the argument shows that, given the particular
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circumstances and the laws in question, the occurrence of the phenomenon was

to be expected; and it is in this sense that the explanation enables us to under-

stand why the phenomenon occurred. (1965a, 337)

An explanation that cites a generalization having narrow scope serves this
purpose just as well as one that cites a generalization of wider scope (so long
as the system in questions falls within the scope of each generalization). By
contrast, on our account the aim of explanation is to provide the resources
for answering what-if-things-had-been-different questions by making expli-
cit what the value of the explanandum variable depends upon. We have
shown in detail how generalizations that are invariant under a wider range
of interventions better serve this aim. D-N explanations appealing to gen-
eralizations with narrow and wide scope will do equally good jobs of
showing that their explananda ‘were to be expected’; by contrast, explana-
tions can differ in the extent to which they can be used to answer a range of
what-if-things-had-been-different questions, and such differences connect to
differences in explanatory depth.
Finally, increased scope does not always correspond to explanations that

are intuitively deeper. The conjunction of Galileo’s law and the Boyle-
Charles law has wider scope than either conjunct taken separately: it
makes interesting predictions about both falling objects and gases, while
each conjunct taken separately makes predictions about only one of these
classes of objects. Yet if we want to explain why an object took three
seconds to fall, an explanation that cites the gerrymandered conjunctive
law is intuitively no deeper than the one that cites Galileo’s law alone. Our
account validates this intuition: the conjunctive law does not increase our
understanding of the variables upon which the falling time depends. This
judgment is in turn reflected in the distinction between ‘other object’ and
‘intervention’ counterfactuals, described in EG1. The conjunction of
Galileo’s law and the Boyle-Charles law does support counterfactuals that are
not supported by Galileo’s law alone: for instance, counterfactuals about
the behavior of ideal gases. Nonetheless, the conjunctive law provides no
more information about what will happen under interventions on vari-
ables affecting the falling time of objects in free fall than does Galileo’s
law alone.
A closely related observation is that our account, and in particular point

7 above, can be used to show how generalizations may sometimes be used to
explain other generalizations. This was a notorious difficulty for the D-N
model of explanation. The problem, as noted by Hempel and Oppenheim in
their famous footnote 33 (1948 [Hempel 1965b], p. 273), is how to distin-
guish genuine explanations of generalizations, such as a derivation of (an
approximation of) Galileo’s law of free fall from Newton’s laws, from
spurious explanations, such as a derivation of Galileo’s law from the con-
junction of Galileo’s law and the Boyle-Charles law. Our account neatly
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draws the distinction on the grounds that Newton’s laws are invariant under
testing interventions with respect to Galileo’s law, whereas the conjunctive
Galileo-Boyle-Charles law is not. That is, interventions on the values of
variables figuring in Newton’s laws, such as the mass and radius of the
earth, would result in various alternatives to Galileo’s law. Newton’s laws
show how the truth of Galileo’s law depends upon the values of certain
variables. By contrast, there is no intervention on the value of a variable
figuring in the conjunctive Galileo-Boyle-Charles law that would lead to
Galileo’s law being false. The conjunctive law in no way shows what the
truth of Galileo’s law depends on. Unlike the conjunctive law, Newton’s
laws provide more information about what would happen under interven-
tions on variables affecting time of fall than does Galileo’s law alone. Thus
while there is a sense in which both Newton’s laws and the conjunction of
Galileo’s and the Boyle-Charles law are ‘more general’ than Galileo’s law
alone (both have greater scope in the sense of enabling predictions about
more systems), this sort of generality does not in itself provide for deeper
explanations. The kind of increase in generality that matters for increased
explanatory depth is the very specific kind exhibited in the relationship
between Newton’s laws and Galileo’s, in which we are shown what the
truth of Galileo’s law depends on.
We should note, however, that by no means everything that we may wish

to count as an explanation of a generalization fully fits the pattern we have
been describing. For example, it is often argued that the stability of plan-
etary orbits depends (mathematically) upon the dimensionality of the space-
time in which they are situated. This accords reasonably well with our idea
that explanations provide answers to what-if-things-had-been-different
questions: the derivation may tell us what would happen if space-time
were five-dimensional and so on. Mark Steiner has argued that genuinely
explanatory mathematical proofs have this character:

My proposal is that an explanatory proof makes reference to a characterizing

property of an entity or structure mentioned in the theorem, such that from the

proof it is evident that the result depends on the property. It must be evident,

that is, that if we substitute in the proof a different object of the same domain,

the theorem collapses; more, we should be able to see as we vary the object how

the theorem changes in response. (Steiner 1978, 143.)

However, it seems implausible to interpret such derivations as telling us
what will happen under interventions on the dimensionality of space-time,
etc. One natural way of extending our position would be as follows: all
explanations must answer what-if-things-had-been-different questions.
When a theory tells us how Y would change under interventions on X, we
have (or have material for constructing) a causal explanation. When a
theory or derivation answers a what-if-things-had-been-different question,

Explanatory Generalizations, Part II: Plumbing Explanatory Depth 191



but we cannot interpret this as an answer to a question about what would
happen under an intervention, we may have a non-causal explanation of
some sort. This accords with intuition: It seems clear that the dependence of
orbital stability upon dimensionality or the dependence of a theorem on the
assumptions from which it is derived is not any sort of causal dependence.
In this paper, our focus is on causal explanation.5

4. Kitcher on Explanatory Unification

In this section and the next, we will examine two theories of explanation
that bear some affinities with our own: Philip Kitcher’s unificationist
account and David Lewis’s causal account. We will argue that neither of
these accounts can supply an adequate account of explanatory depth.
According to Kitcher, the fundamental idea of the unificationist

approach is that

Science advances our understanding of nature by showing us how to derive

descriptions of many phenomena, using the same patterns of derivation again

and again, and, in demonstrating this, it teaches us how to reduce the number of

types of facts we have to accept as ultimate (or brute). (1989, 432.)

Put slightly differently the idea is that successful explanations unify by
allowing us to deduce a range of different facts from some much smaller
number of fundamental assumptions by repeatedly using the same patterns
of derivation.
The unificationist approach bears some similarities to our approach; in

particular, both approaches take it as an essential feature of explanatory
generalizations that they apply to a number of different cases. But the two
accounts differ fundamentally in what they take the relevant cases to be. In
particular, the unificationist approach understands the relevant cases in
terms of the notion of scope while we focus instead on range of invariance.
A generalization can have very wide scope while being invariant only under
a narrow range of interventions or indeed without being invariant under any
interventions at all. Conversely, a generalization can have narrow scope
while being invariant under a wide range of interventions.
By way of illustration, consider two brief examples. The generalization

(K) that specifies that for each spatio-temporal region of the universe, the
microwave radiation background left over from the big bang is 3�K has
very wide scope. (K) is a unifying generalization that could be used, over
and over again, in the derivation of many different phenomena. Nonethe-
less, it does not follow from this fact that (K) is invariant over a wide range
of interventions. In fact it is not clear that there are any well-defined testing
interventions with respect to (K). In addition, contemporary cosmological
theorizing suggests that whether or not (K) holds is extremely sensitive to
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the precise initial conditions that obtained in the very early universe. If these
were even slightly different (K) would not hold. (K) describes an extremely
pervasive uniformity but pervasiveness has to do with scope, not invariance.
On our account (K) is not an explanatory generalization. Unificationist
accounts seem to reach the opposite conclusion.
As a second illustration, imagine two different neural circuits N1 and N2.

N1 is, as biologists say, highly conserved—it is found in many different
kinds of organisms, as diverse as snails and human beings, and the same
generalizations describe its behavior in each case. By contrast N2 is found
only in a certain species of snail. The generalizations governing the behavior
of N1 have much greater scope than the generalizations governing N2, but
again it does not follow that they are invariant under a wider range of
interventions. It is entirely possible that the generalizations governing N2
and those governing N1 are invariant under exactly the same interventions
on neural structure. While the unificationist account seems to yield the
conclusion that the generalizations governing N1 provide more unified and
hence better or deeper explanations than the generalizations governing N2
simply in virtue of applying to more organisms (or more different kinds of
organisms) our account avoids this unintuitive conclusion.
There is another fundamental problem with the unificationist account.

We have been assuming so far that on this account explanations can differ
in degree of unification and that the more unified an explanation is the
greater its explanatory depth. An explanation can provide less unification
than some alternative, and hence be shallower, but still qualify as somewhat
explanatory. This is, we submit, the natural way of connecting unification
and explanatory depth on a unificationist account. Unfortunately, Kitcher’s
treatment of a number of familiar puzzle cases requires rejection of this
assumption. And without it, it is hard to see how to provide any plausible
treatment of explanatory depth within a unificationist framework.
To see the difficulty, recall Kitcher’s treatment of the problems of explana-

tory irrelevance and explanatory asymmetry. Why is it that we cannot
appeal to the fact that Jones, a male, has taken birth control pills to explain
his failure to get pregnant? According to Kitcher, any explanatory store of
which this ‘explanation’ is a part will be ‘less unified’ than a competing
explanatory store according to which the failure of males to become pregnant
is always explained in terms of their gender rather than their ingestion of
birth control pills. Similarly, the reason why we cannot explain the height
of a flagpole in terms of the length of the shadow it casts is that explanations
of lengths of objects in terms of facts about shadows do not belong to the
‘set of explanations’ which ‘collectively provides the best systemization of
our beliefs’ (1989, p. 430). Quite apart from any other doubts one may have
about these claims, they clearly require the idea that explanations that are
less satisfactory from the point of view of unification than some alternative
are unexplanatory, rather than merely less explanatory than the alternative.
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However, if we accept this idea, we lose the ‘natural’ connection between
unification and explanatory depth described above. If we have two compet-
ing explanations of the same subject matter, one of which is more unified
than the other, the second cannot be shallower than the former but none-
theless explanatory; instead it must be completely unexplanatory.
Kitcher’s version of the unificationist account thus faces a dilemma. On

the one hand, it seems very natural and desirable to say that generalizations
and theories can sometimes be explanatory even though alternative deeper
(or ‘more unifying’) explanations are known or discoverable. For example,
the regression equation (2) relating quantities of water and fertilizer to plant
height is explanatory even though there are far deeper, more biologically
grounded explanations of plant growth. Similarly, Galileo’s law can be used
to explain facts about the behavior of falling bodies even though it is less
explanatorily deep than the laws of Newtonian mechanics, the latter are
explanatory even though they are less deep than those of special and general
relativity and so on. If we reject this idea, we seem led to the conclusion that
only the deepest, most unified theories are explanatory at all; everything else
is non-explanatory. This is to completely give up on the idea that there are
degrees of explanatory depth.
Suppose, on the other hand, that we agree that if theory T2 is deeper or

more unified than T1, it does not automatically follow that T1 is unexplana-
tory. Then Kitcher’s solution to the problems of explanatory irrelevance
and asymmetry are no longer available: it isn’t clear why we shouldn’t
conclude that an ‘explanation’ of Jones failure to get pregnant in terms of his
ingestion of birth control pills is genuinely explanatory, although shallower
than the alternative explanation that invokes his gender.
Intuitively, the problem is that we need a theory of explanation that

allows us to capture several different possibilities. On the one hand, there
are generalizations and associated putative explanations (like the general-
ization relating barometric pressure to rain or the generalization which
relates ingestion of birth control pills among men to failure to get pregnant)
that are not explanatory at all; they fall below the threshold of explanatori-
ness. On the other hand, above this threshold there is something like
a (multi-dimensional) continuum: a generalization can be explanatory
but less deep than some alternative. What we have just seen is that the
unificationist account has difficulty capturing simultaneously both of these
possibilities—either there is no threshold or there is no continuum.
By contrast, the account we have proposed does this in a very natural
way. Some generalizations are not invariant under any testing interventions
at all and hence are non-explanatory. Other generalizations such as (2) are
invariant under some interventions (and answer some what-if-things-had-
been-different questions) and hence are above the threshold of explanatori-
ness. Nonetheless they are less invariant (in the sense captured by (1)–(7) of
section 3) than other generalizations and hence less explanatory.
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5. Lewis on Causal Explanation

David Lewis has propounded a theory of explanation according to which
‘to explain an event is to provide some information about its causal history’
(Lewis 1986a, 217).6 This thesis naturally suggests an approach to the
problem of explanatory depth: one explanation is deeper or more powerful
than another if it provides more information about causal history. In con-
trasting his view with the D-N approach, Lewis writes: ‘It’s not that explana-
tions are things that we may or may not have one of; rather, explanation is
something we may have more or less of ’ (1986a, 238). This sounds very
much in accord with our own claim: generalizations do not divide neatly
into laws, which are explanatory, and accidental generalizations, which are
not; rather, generalizations can have degrees of invariance and hence
degrees of explanatory power. In fact, however, Lewis stresses increases in
explanatory information along a different dimension than we do.
As an intuitive aid, imagine some event to be explained as a point at the

top of a page, and the various causal chains leading up to that event as lines
leading up to that point. Lewis complains that a ‘D-N argument presents
only one small part—a [horizontal] cross section, so to speak—of the causal
history’ (1986a, 237). Suppose for example, we want to explain why a
particular plant grew to height y just before it was harvested. Suppose,
moreover, that generalization (2) is somehow transformed into a genuine
law (20) that relates the height of the plant to quantity of water and fertilizer,
as well as to other initial conditions. Then we could provide a D-N argu-
ment for the height of the plant from (20) and the appropriate initial
conditions. Still, this would not be a complete explanation. It is possible
to ‘interpolate’ and ‘extrapolate’ more causal information. For instance, we
could provide information about why the plant received quantity x1 of water
during the growing season, perhaps in terms of meteorological conditions. Or
we could explain how the water, fertilizer, etc. affected certain growth pro-
cesses in the plant, and how these in turn affected the plant’s height. That is, we
could provide more information along the ‘vertical’ dimension by describing
causes and intermediate effects of the plant’s receiving x1 amount of water.
In section 3 above, we focused primarily on degrees of explanatory power

along the ‘horizontal dimension’. But we have no objection to Lewis’s
concern with providing more explanatory information along the vertical
dimension. If we have an explanation of the height of a particular plant in
terms of the amount of water and fertilizer it received, then we can improve
upon it in the various ways suggested in section 3 above. We can also
improve upon it by extrapolating or interpolating: explaining (by means
of invariant generalizations) why the plant received quantity x1 of water or
why it underwent certain growth processes. Causal explanations of the sort
we have described are the building blocks of complete explanations: they
can be ‘stacked’ or ‘subdivided’ to provide richer causal histories.
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Nonetheless, we believe that there is a horizontal component to explana-
tory depth that is omitted from Lewis’s account. That is, even when we
restrict ourselves to one of the basic building blocks, we can still distinguish
between degrees of explanatory depth in a way that Lewis cannot. In order
to appreciate this point, we must turn to Lewis’s theory of causation.
According to Lewis (1973), the (occurrent) event e is counterfactually
dependent upon the (distinct, occurrent) event c if the following counter-
factual is true: if c had not occurred, e would not have occurred. In order to
avoid certain problems involving pre-emption, Lewis defines causation as
the ancestral of counterfactual dependence, and not as counterfactual
dependence itself. No matter: relations of counterfactual dependence are
still the basic building blocks of causal histories. To provide a (basic)
explanation, then, is to provide information about the causal history of
the explanandum event, which is to provide information about events upon
whose occurrence the explanandum event counterfactually depends.
Lewis’s account of explanation thus agrees with ours that explanations

provide the resources for answering what-if-things-had-been-different ques-
tions. To provide the information that c is part of the causal history of e is
(to a first approximation) to provide the information that if c had not
occurred, e would not have occurred. However, such information does not
enable us to answer very many what-if-things-had-been-different questions:
instead each causal claim gives the answer to only one such question. To
illustrate this, suppose that the electric field intensity at a particular point is
explained in terms of the charge density along a particular wire, using
Coulomb’s law (this is example (1) of EG1). On Lewis’s account, the wire’s
having the charge density it does counts as a cause of the field strength, and
hence the charge density is explanatorily relevant to the field strength. To
state that the charge density was a cause of the field intensity does provide
us with the answer to one what-if-things-had-been-different question: it tells
us that if that particular charge density had not occurred, that particular
field intensity would not have occurred. Unlike the explanation citing
Coulomb’s law, however, this causal explanation would not tell us anything
about how the field intensity would have changed if the charge density had
been different in various ways. An explanation that does exhibit this
detailed pattern of dependence is for this reason deeper than one that does
not. Lewis, by focusing only on counterfactuals involving the occurrence or
non-occurrence of specific events, does not have the resources to capture
this notion of explanatory depth.
In a recent paper, Lewis has offered a new theory of causation. According

to this theory, causation is (the ancestral) of influence, where

c influences e iff there is a substantial range c1, c2, . . . of different not-too-distant
alterations of c (including the actual alteration of c) and there is a range

e1, e2, . . . of alterations of e, at least some of which differ, such that if c1 had
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occurred, e1 would have occurred, and if c2 had occurred, e2 would have

occurred, and so on. (Lewis 2000, 190)

The intuitive idea is that in order for c to count as a cause of e, it needn’t be
the case that the occurrence of e depends counterfactually upon the occur-
rence of c: it is enough if the time and manner of e’s occurrence depends
upon the time and manner of c’s occurrence. Consider our example, in
which the value of the electric field at a point depends upon the charge
density and geometry of a conductor according to Coulomb’s law. Translat-
ing into Lewis’s terminology, c might be the presence of a conductor with a
particular charge density and geometry, and e the presence of an electric
potential field with a certain intensity and direction. The ‘alterations’
c1, c2, . . .would be alternative combinations of charge density and geometry
while e1, e2, . . .would be alternative values of the electric field potential.
Lewis’s definition then comes very close to our notion of invariance. The
requirement that there must be true counterfactuals of the form ‘if ci had
occurred, ei would have occurred’ is analogous to our requirement that an
explanatory relationship between two variables be invariant under interven-
tions, and not merely report a correlation. Lewis’s requirement that this
relation hold for ‘not-too-distant’ alterations is analogous to our require-
ment (elucidated in section 3 above) that an explanatory relationship be
invariant under some range of interventions in a neighborhood that includes
the actual values of the explanans variables. His requirement that the ei’s
not all be identical is analogous to our requirement that an explanatory
relationship be invariant under testing interventions.
We can only speculate about how or whether Lewis might revise his

theory of causal explanation in light of his new theory of causation. One
possible revision would be to maintain that explanations provide informa-
tion about the causal history of the event to be explained, where this
information includes information about the patterns of counterfactual depend-
ence that establish that one event ‘influences’ another. If so, Lewis’s theory
would closely resemble ours. There would be some differences of detail—
in particular, differences about how the relevant counterfactuals are to
be understood (see EG1 for details). Nonetheless, this theory would be
close enough to ours that Lewis could make use of much of section 3 to
explicate the various ways in which one explanation can be deeper and more
powerful than another by exhibiting a wider pattern of counterfactual
dependence.
There is, however, some reason to think that Lewis might resist this

move. In contrasting his causal theory of explanation with the covering
law approach he writes:

we can ask whether information about covering laws is itself part of explanatory

information. The covering law theorist says yes; I say no. (Lewis 1986a, 239.)
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The idea seems to be that while a covering law may play a role in establish-
ing that an event c is a cause of e, the law does not itself figure in the
explanation of e. We conjecture that Lewis might take the same attitude to
our invariant generalizations. An invariant generalization expresses a pat-
tern of counterfactual dependence, which can establish that some event c is
part of the causal history of e. In this way, the invariant generalization
provides indirect information about the causal history of e. Beyond this,
however, the generalization would play no further role. It should be clear
that we think this would be a mistake. To say that the charge density’s being
equal to � is a cause of the field intensity’s being E would imply only that
some change in the charge density would yield some change in the field
intensity.7 It seems clear to us that a deeper explanation is to be had by
specifying just how the field intensity depends upon the charge density. This
is what laws and other sorts of explanatory generalizations do. If Lewis were
to treat invariant generalizations as he treats covering laws, he would
be throwing away just the resources he needs to provide an account of
explanatory depth.

8. Conclusion

In this essay, we have argued that the account of explanatory generaliza-
tions articulated in a companion paper (Woodward and Hitchcock 2003)
provides a natural account of explanatory depth. One generalization can
provide a deeper explanation than another if it provides the resources for
answering a greater range of what-if-things-had-been-different questions, or
equivalently, if it is invariant under a wider range of interventions. That is,
generalizations provide deeper explanations when they aremore general. It is
important, however, to understand generality in the right way: generality with
respect to hypothetical changes in the system at hand. By focussing on the
wrong sort of generality—generality with respect to systems other than the one
whose features are to be explained—rival accounts of explanation such as
Hempel’s D-Nmodel and Kitcher’s unificationist theory have been unable to
provide adequate accounts of explanatory depth.

Notes

*We would like to thank Nancy Cartwright, Malcolm Forster, Alan Hájek, Dan Hausman,

Richard Healey, Paul Humphreys, and Judea Pearl for helpful comments. Woodward’s con-

tribution to this paper was supported in part by the National Science Foundation

(SBR-9320097).
1Woodward and Hitchcock (2003) contains a detailed comparison with Hempel’s D-N

model (Hempel and Oppenheim 1948, Hempel 1965a).
2As we note in EG1, requiring that an intervention on X affect Y, if at all, only through the

effect of the intervention on X is not tantamount to requiring that the intervention on X does

affect Y.

198 NOÛS



3 For additional discussion, see Woodward (2000, sections 8 and 9).
4Note that it will not help to explicitly incorporate various ceteris paribus conditions—

e.g., the mass and radius of the earth—as antecedents in order to render Galileo’s law

exceptionless. The resulting law would still say nothing about what would happen if these

conditions were changed, and hence would not be invariant under testing interventions on the

relevant variables.
5We are grateful to Richard Healey for a helpful discussion of this issue.
6 Lewis contrasts explaining an ‘event’ with explaining other types of phenomena, such as

generalizations, or capacities of systems; these explanations need not be causal. Since this

distinction will not be central to our discussion, we will typically drop explicit reference to

explanation of events.
7Hitchcock (1995) levels a similar objection against Salmon (1984).
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