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1. INTRODUCTION 

What is the relationship between claims of singular causation such as 

1. David's smoking caused him to develop lung cancer, 

and claims of general causation, such as 

2. Smoking causes lung cancer? 

Hume held that the truth of singular causal claims depended upon the 
existence of universal regularities in nature. In the first Enquiry, for 
example, Hume wrote that 

we may define a cause to be an object, followed by another, and where all the objects 
similar to the first, are foUowed by objects similar to the second. (Hume [1748] 1955, 
~vII) 

Davidson (1980) concurs, while noting that it may not be apparent 
which generalization is instantiated by any particular episode of singular 
causation: 

[I]f 'a  caused b'  is true, then there are descriptions of a and b such that the result of 
substituting them for ' a '  and 'b '  in 'a  caused b '  is entailed by true premises of the form 
of (L) and (P) [where (L) provides the form of a causal law, and (P) provides the form 
of premises describing initial conditions]. . .  If this is correct, it does not follow that we 
must be able to dredge up a law if we know a singular casual statement to be true; all 
that follows is that we know there must be a covering law. (pp. 159-60) 
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Hume and Davidson may be understood as pursuing the following strat- 
egy: analyze the truth-conditions of general causal claims in terms of 
universal regularities in nature, and then treat singular causal claims 
as describing instantiations of such regularities. Let us call this the 
Humean strategy. ~ 

In her inaugural lecture at Cambridge University, Elizabeth 
Anscombe challenged the doctrine that true singular causal claims 
describe instantiations of universal regularities: 

It is over and over again assumed that any singular causal proposition implies a universal 
statement running "Always when this, then that" . . .  Even a philosopher acute . . .  as 
Davidson, will say, without offering any reason at all for saying it, that a singular causal 
statement implies that there is such a true universal proposition - though perhaps we 
can never have knowledge of it. Such a thesis needs some reason for believing it! 
(Anscombe, 1981, p. 147) 

One of Anscombe's reasons for rejecting the Humean strategy is the 
belief that singular causation is compatible with indeterminism. That 
is, sentence 1 might be true although there is no exceptionless law which 
subsumes David's smoking and his lung cancer. But even granting the 
compatibility of singular causation and indeterminism, as I believe we 
should, the issue is not settled. There remains the option of interpreting 
general causal claims in terms of statistical rather than universal laws, 
and then proceeding as before. Let us call this the neo-Humean strategy. 

Another type of strategy would be to begin by trying to analyze 
singular causal claims, say in terms of single case probabilities, and 
then to try to understand general causal claims as generalizations over 
singular causal claims. This strategy is suggested by Lewis (1986) 
and Humphreys (1989), although neither gives an explicit account of 
how the general causal claims relate to singular causal claims. (Carroll 
(1991) does attempt to provide such an account.) Let us call this the 
generalization strategy. 

I wish to explore this issue from within the framework of a prob- 
abilistic theory of causation. Several proponents of this theory have 
offered arguments that singular and general causal claims describe dis- 
tinct species of causal relation. Eells (1991), for example, claims that 

Causal claims made on one of the two levels of causation turn out to be quite independent 
of claims made on the other. . .  I argue that (1) very little (if anything) about what happens 
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on the [singular] level can be inferred from [general] level probabilistic causal claims, 
and that (2) very little (if anything) about [general] level probabilistic causal relations 
can be inferred from [singular] level probabilistic causal claims. (Eells, 1991, p. 6. I 
have substituted the words 'singular' and 'general '  for ' token' and ' type' ,  respectively.) 

I will diagnose the flaw in arguments for this conclusion, and then 
offer a positive account of the relationship between singular and general 
causation. 

2. PROBABILISTIC CAUSATION 

The idea that underlies probabilistic theories of causation is that C is a 
cause of E if P(E[C) > P(E] ~ C). This idea needs to be elaborated, 
and it has been elaborated in a number of ways. The best-developed 
approach is that of Eells (1991), who expands upon the theory advanced 
in Cartwright (1979). I will here give only an outline of the Cartwright- 
Eells approach to probabilistic causation. 

This theory of causation is formulated within the framework of the 
mathematical theory of probability. The central concept of this theory is 
that of a 'probability space'. A probability space is atriple (f~, 5 t', P)  : f~ 
is a set; ~ is a set of subsets of f~ having the structure of a 'a-field' 
or 'or-algebra'; 2 and P is a 'probability function' which assigns to each 
member of f a 'probability value' between zero and one. Members of 
f are called events. 3 I put aside for now questions about the empirical 
interpretation of these mathematical concepts; questions, for example, 
about whether probability is to be interpreted in terms of single case 
propensities or long run frequencies cannot be answered independently 
of questions about whether it is singular or general causation that is 
being modelled. 

The assessment of the causal relevance of C for E is made against 
a partition {G1, G2 . . . .  }4 of fL Each cell of the partition represents 
a homogeneous causal background context. (See Eells (1991) for an 
explanation of how this partition is to be constructed.) C is a cause of E 
if P( E]C A G~ ) > P( E I ~ C A G~ ) across a sufficient range of cells Gi. 
Similarly, we can say that C is a negative or inhibiting cause of E -  or that 
C prevents E -  if P(EIC A G~) < P(EI  ~ C A G~) across a sufficient 
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range of cells. For what range of cells must these inequalities hold? Eells 
(1991) defends a context-unanimity requirement: a cause must raise the 
probability of its effect in every cell of the partition (and analogously for 
inhibiting causes). 5 Humphreys' (1989) unconditionality requirement is 
similar. Skyrms (1980) and Sober (1984) endorse a Pareto-dominance 
requirement: a cause must raise the probability of its effect in some cell 
of the partition, and lower the probability of its effect in none. Dupr6 
(1984) can be read as claiming that a cause must raise the probability of 
its effect in a weighted majority of the cells. 6 We will not try to resolve 
this dispute here. 

Eells (1991) intends his theory to capture only causal relations at 
the general level (which Eells calls type-level causal relations); he 
offers a separate theory for singular (token-level) causation. It would 
beg the question to agree with Eells at this point; 7 but we may note 
for now that his theory provides a superficially plausible theory of 
general causation (subject to the refinements introduced below), while 
the argument considered in section 4 below renders it superficially 
implausible as an account of singular causation. As an expositional 
tactic then, I will begin by granting that the probabilistic theory o f  
causation introduced in this section is plausible as an account of general 
causation. In particular, this account seems to make sense of the sort of 
statistical methods that are used to assess the truth of claims such as 2. 

Elsewhere (Hitchcock, 1993) I have shown that this probabilistic 
theory of causation needs to be refined. Consider, for example, how 
this theory would treat the claim that smoking causes lung cancer. If 
this claim is true, then P(LCIS  A Gi) > P(LCI ~ S /x  G~) for a 
range of background contexts G~. (Where S and LC have the obvious 
interpretations.) Let us focus on one of these background contexts, call 
it G~. The theory suggests the binary picture of the probabilities within 
this cell depicted in Figure 1. There are two possibilities, smoking 
and non-smoking, and each confers a different probability upon the 
outcome lung cancer. But a more realistic picture of the underlying 
probabilities would look more like Figure 2. This figure depicts the 
function f (x )  = P(LClppd = x A Gn) (where ppd is a variable that 
measures quantity of smoking in units of packs per day). This picture 
poses a difficulty for the probabilistic theory of causation, for there are 
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Probability of 
Lung Cancer 

Not Smoking Smoking 

Figure 1. The binary picture. 

no longer just two probability values for us to compare. Suppose for 
example, we are interested in whether smoking one pack of cigarettes per 
day 8 causes lung cancer. Then, according to the theory sketched above, 
we must compare P(LClppd = 1 A Gn) to P(LC]ppd ~ 1 A Gn). 
But Figure 2 does not supply a value for this second probability, indeed 
its value depends upon the probabilities P(ppd = ziG,,) for x ~ 1; 
so whether smoking one pack of cigarettes a day causes lung cancer 
depends upon the probability of smoking zero packs a day, half a pack 
a day, two packs a day, and so on. This, I have argued, is a very 
counterintuitive consequence of the standard probabilistic theory of 
causation. The problem is a version of what Eells (1988) has dubbed 
the problem of 'disjunctive causal factors'. 

The solution advocated in (Hitchcock, 1993) is to view causal claims 
as describing conditional probability functions, such as the function f 
depicted in Figure 2. This is typically done by comparing two different 
values of the function. It follows that causal claims are typically made 
relative to an alternative. For example, the claim that smoking one 
pack per day causes lung cancer would normally be understood as being 
made relative to the alternative of smoking zero packs per day. This 
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Probability of 
Lung Cancer 

Figure 2. 

Amount Smoked (p.p.d.) 

A more realistic picture. 

claim would then express the inequality P(LCIppd  = 1 A Gn) > 
P(LCIppd  = 0 A Gn), or more simply f(1)  > f(0).  This gives 
us qualitative information about the shape of the function f. In the 
appropriate context, however, a different alternative might be made 
salient. We can imagine a country in which almost everyone smokes two 
packs per day, and in which the surgeon general admonishes citizens to 
cut back to one pack per day. In such a context, it might be natural to say 
that smoking (only) one pack per day inhibits lung cancer, describing the 
inequality f(1)  < f(2).  In general, such causal claims are ambiguous 
unless an alternative is supplied, either explicitly or implicitly. 

Although I have advocated a probabilistic theory of causation, I do 
not advocate it to the exclusion of other accounts, such as Salmon's 
(1984) mark-transmission theory or Lewis's (1986) counterfactual 
theory. With Skyrms (1984), I believe that paradigm examples of causa- 
tion - baseballs crashing through windows, flipped switches turning on 
lights, stabbings causing the deaths of dictators - involve an "amiable 
jumble" of regularities, counterfactual dependence, statistical correla- 
tion, spatiotemporal processes, and so on. The probabilistic theory 
captures an important component of the concept of causation. More 
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precisely, it enables us to provide a taxonomy of causal relevance, to 
distinguish 'promoting' from 'inhibiting' causes. 9 This component of 
our concept of causation is certainly one that has important applications; 
I will mention two. First, information about promot ing and inhibiting 
causes is relevant to making decisions. If one seeks to avoid lung cancer, 
one should participate in those activities which inhibit lung cancer, and 
eschew those which promote it. This idea is developed more fully in 
Cartwright (1979), who argues that the concept of a 'causal law', given 
a probabilistic explication, is needed to distinguish between effective 
and ineffective strategies. Second, the notions of causal promotion and 
inhibition are of importance within the theory of natural selection. Cen- 
tral to that theory is the distinction between the selection of a trait and the 
selection for a trait. In the evolution of hominids there has (presumably) 
been selection for the ability to produce speech; as a byproduct of this 
selection process, there has also been selection of a configuration of the 
trachea and esophagus which has left us prone to choking on food. In 
order for a trait to be selected for, it must have promoted reproductive 
success in those organisms that possessed it. Sober (1984) makes use of 
a probabilistic theory of causation in explicating this notion of 'selection 
for'. 

In arguing against the claim that singular and general causal claims 
describe two distinct species of causal relation, then, I am not deny- 
ing that different philosophical accounts of causation can complement, 
rather than compete with, one another. I am denying, however, that the 
distinction between the probabilistic theory sketched above and, say, 
Salmon's mark-transmission theory, corresponds directly to the distinc- 
tion between singular and general causation. For example, I disagree 
with Sober (1985), who maintains that probabilistic theories provide 
the best account of general causation, while something like the mark- 
transmission theory is needed to account for singular causation. 

3. AGAINST GENERALIZATION 

One natural suggestion is that general causal claims such as 

2. Smoking causes lung cancer 
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are generalizations over singular causal claims such as 

1. David's smoking caused him to develop lung cancer; 

much as the claim 

3. All frogs are amphibians 

is a generalization over claims of the form 

4. If Kermit is a frog, then he is an amphibian. 

There is, however, an important disanalogy between 2 and 3. In 3, the 
terms that flank the copula are pluralized, whereas in 2, the terms that 
flank 'causes' are not. A better analogue of 3 might be 

5. Srnokings cause lung cancers, 

or slightly more perspicuously 'Episodes of smoking cause episodes of 
lung cancer'. In 5, the terms that flank the word 'cause' are plural event 
sortals, and the structure of the sentence suggests that it is describing 
singular causal relations that hold between events that fall under the 
sortals. We might use a construction akin to 5, for example, if we are 
interested in the frequency with which such causal episodes happen. 
For example, we might claim that 

6. Every year, smoking causes thousands of cases of lung 
cancer. 

This causal claim is plausibly analyzed as 

. (For every year y) (There exist thousands of x) (x's smoking 
causes x to develop lung cancer in year y). 
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By contrast, 2 appears to be asserting that a causal relation holds, not 
between events that fall under particular sortals, but between the sortals 
or event-types themselves. 1° Thus the surface grammar of 2 does not 
readily suggest analysis in terms of generalization over singular causal 
claims. 

Surface grammar aside, let us try to understand 2 as a generaliza- 
tion over claims of singular causation. Here are some candidates for 
analysans: 

8. (x)(x's smoking causes x to develop lung cancer); 

9. (x)(x smokes -+ x's smoking causes x to develop lung cancer); 

10. (Sx)(x's smoking causes x to develop lung cancer). 

8 is clearly too strong: 2 is true despite the fact that many people do not 
smoke. Similarly, 9 is too strong: not all smokers develop lung cancer, 
so not all smokers develop lung cancer because of their smoking) 1 10 
is true, like 2, but existential claims seem to be too weak to provide an 
analysis of general causation. To borrow an example from Wayne Davis 
(1988), even though Jim Fixx's last run caused his death, we would not 
say that jogging causes death (indeed, we would be inclined to say that 
it promotes good health)) 2 More interestingly, there is also a sense in 
which the existential analysis is too strong. There can be true general 
causation claims that have no instances, such as: 

11. Eating one kilogram of uranium 235 causes death. 

11 is true in virtue of certain features of human physiology and the 
physics of nuclear chain reactions; however, no one has ever died in 
this unusual way, and it is unlikely that anyone ever will. 

This game of example and counterexample could be continued, and 
the interested reader should consult the introduction of Eells (1991) 
for a more thorough discussion of the candidates discussed above (and 
others). What is wanted, however, is a general line of argument that 
shows that no such strategy can be successful. Such an argument is 
suggested by example 11. The general causation claim in 11 can be 
true because it does not entail anything about the instantiation of the 
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event-types figuring in it. This is precisely what we would expect if 
the probabilistic theory sketched in the previous section is correct as 
an account of general causation. According to that theory C is a cause 
of E if C raises the probability of E (relative to a certain alternative 
C r, and across a sufficient range of background contexts). But from 
this set of probabilistic inequalities, nothing strictly follows about the 
actual occurrences C and EJ 3 For example, it is possible (although very 
unlikely) that smoking increases the probability of lung cancer even 
though in a certain population all and only the non-smokers develop 
lung cancer. In contrast, singular causal claims do entail that the named 
events occur; 1 would not be true unless David smoked and David 
developed lung cancer. Thus if general causal claims could be analyzed 
in terms of singular causal claims, general causal claims should have 
implications about the instantiation of the event-types named. By modus 
tollens, claims of general causation cannot be reduced to claims of 
singular causation. 

I do not imagine that this line of argument is watertight, but only 
that it is a reasonable extrapolation from the responses to particular 
attempts to implement the generalization strategy. In any event, it does 
not by itself entail the independence of singular and general causation. 
It shows that if one starts with an account of singular causal claims, one 
will not be able to analyze general causal claims as generalizations over 
singular causal claims and end up with a theory of general causation that 
looks something like the probabilistic theory sketched in the previous 
section. In section 1, we saw that there were (at least) two strategies 
that one might follow in trying to characterize the relationship between 
singular and general causation. In this section, we have discussed only 
the generalization strategy, which begins with singular causation and 
then tries to analyze general causation in terms of it. But one could 
proceed in the other direction. Here, for example, is a fairly simple 
suggestion that has not been ruled out by the arguments that have been 
presented so far: 

12. David's smoking caused him to develop lung cancer just in 
case (i) David smokes (or smoked), (ii) David developed 
lung cancer, and (iii) smoking causes lung cancer. 
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This is none other than the neo-Humean strategy. One advantage of 
this proposal is that it accounts for an important difference between 
claims of singular causation and claims of general causation that we 
have already noted; singular causal claims imply that their relata occur, 
while general causal claims carry no analogous implication. According 
to the neo-Humean strategy, this implication is tacked on in moving 
from the general to the singular level. 

4. THE MISHAP AT REICttENBACH FALL 

The central type of argument for the independence of singular and gen- 
eral causation invokes examples of 'making it the hard way. '14 These 
examples present rather direct arguments against the neo-Humean pro- 
posal introduce~ in the previous section, but they also provide a more 
subtle positive argument for the independence of the two causal levels. 
In these examples, a relation of negative causal relevance is alleged to 
hold between two event-types, while the events which instantiate those 
types stand in a relation of positive causal relevance. I will present an 
example due to I. J. Good (1961-2) (another example of this sort is 
found in Eells and Sober (1983); Eells (1991) abounds with them). 15 

In Good's story, Sherlock Holmes is walking through the valley at 
Reichenbach Fall] 6 while his nemesis, Moriarty, is poised on top of a 
cliff overlooking Holmes. Moriarty has perched a boulder on the edge of 
the cliff, so that when he pushes it carefully it will have a ninety percent 
chance of killing Holmes. Holmes' intrepid companion Watson arrives 
atop the cliff just as Moriarty is about to push the boulder. Watson cannot 
see Holmes from his vantage point, so he is not able to push the boulder 
in such a way that it will be certain to miss Holmes. Nevertheless, 
Watson reasons that it is better for him to push the boulder in a random 
direction than to let Moriarty push it while aiming carefully. Acting 
quickly on this line of reasoning, Watson rushes forward and pushes 
the boulder off the cliff in such a way that Holmes' chance of dying is 
reduced to just ten percent. As fate would have it, the boulder crushes 
Holmes anyway. Although it decreased the chance of Holmes' death, 
Watson's pushing the rock caused Sherlock Holmes to die. 
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Let us call pushings of similar rocks in similar circumstances with 
similar force 'pre-emptive pushings', and call deaths of healthy men 
while strolling through similar valleys 'deaths by crushing'. 17 At the 
level of  general causation, a relation of negative causal relevance seems 
to hold: 

13. Pre-emptive pushing prevents death by crushing. 

Watson's push was of the sort that made it tess likely that Holmes would 
die. If the set-up were re-created, and the rock pushed many times - 
sometimes in Watson's random manner, sometimes in Moriarty's calcu- 
lated manner - fewer deaths would result from the Watson-type pushes. 
Nonetheless, we are inclined to say: 

14. Watson's pushing the rock caused Holmes to die. 

Thus at the level of singular causation, a relation of positive relevance 
seems to hold) 8 This type of example seems to refute the neo-Humean 
view suggested in the previous section) 9 Moreover, it presents a gen- 
eral challenge: 'cause' and 'prevent' are antonyms, so how are we to 
reconcile claims 13 and 14? The reconciliation that Good and others 
invite us to accept is that there are two very different types of causation 
in play: since general causation is independent of singular causation, 
there is no contradiction between 13 and 14. The standard probabilistic 
theory of causation seems to yield the right verdict at the level of general 
causation, but the wrong verdict at the level of  singular causation. Thus 
some other theory of singular causation is needed. 

This assessment is strengthened by an example due to Cartwright 
(1979). Nancy discovers poison oak in her garden, and she decides to 
spray it with a defoliant. The defoliant claims to be ninety percent effec- 
tive, meaning that if properly used, the poison oak has a ninety percent 
chance of dying within a specified period of time - say one month. Let 
us assume that this claim is accurate. Let us assume, moreover, that if 
left untreated, the poison oak would have only a ten percent chance of 
dying within one month. Thus, spraying with this defoliant decreases 
the chances of survival for plants of  this kind from ninety percent to ten 
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percent. As it happens, however, the plant survives. In this example, 
the probabilities are identical with those in Good's story, with Nancy's 
spraying being analogous to Watson's pushing, and the poison oak's sur- 
viving being analogous to Holmes' dying. (Try not to let this confuse 
you.) In describing the story, one could make the analogue of claim 13: 

15. Spraying with ninety percent effective defoliant prevents the 
survival of healthy poison oak plants. 

Yet one would not say: 

16. Nancy's spraying the poison oak with ninety percent effective 
defoliant caused it to survive. 

16 is the analogue of claim 14. Although the two stories exhibit identical 
probability relations, they differ with regard to the causal relations that 
hold at the singular level. This threatens to undermine the very enterprise 
of providing a probabilistic account of singular causation, 2° suggesting 
that singular and general causation demand very different theories. 

5. RECONCILIATION 

In order to reconcile the apparently contradictory claims 13 and 14, we 
must invoke the refined probabilistic theory of causation sketched in 
section 2: causal claims describe functions of probabilistic dependence, 
typically by contrasting the probability of the effect in the presence of 
alternative causes. Let us apply this principle to claim 14 above, which 
asserts that Watson's pushing the rock caused Holmes to die. This 
tells us that Watson's pushing the boulder increased the probability that 
Holmes would die, relative to some salient alternative. A natural alter- 
native would be that in which no one pushes the bounder, so let us 
assume that 14 is implicitly being made against this alternative. Let W 
represent Watson's pushing the boulder, N represent no one's pushing it, 
and H represent Holmes' death. Then 14 would express the following 
inequality: 

17. P(HtW ) > P(HIN ). 
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There is, however, another salient alternative to Watson's pushing 
the boulder: the alternative in which Moriarty pushes the boulder. Let 
M stand for this alternative. Then the following inequality will also 
hold: 

18. P(HIW ) < P(HIM ). 

This inequality could be expressed by the claim that Watson's pushing 
the rock was a negative cause of Holmes' dying, relative to Moriarty's 
pushing the rock; or more informally by 

19. Holmes died despite Watson's pushing the rock. 2a 

Note that we accept 19 as readily as we accept 14, and that 19 appears to 
conflict with 14 as directly as does 13. But the apparent conflict between 
14 and 19 cannot be resolved by postulating the independence of singular 
and general causation, for both claims express causal relations at the 
singular level. Instead, claims 14 and 19 are reconciled by recognizing 
that they are implicitly being made relative to different alternatives. 

The relativity of causal claims to an alternative cause holds at the 
level of event-types as well: pre-emptive pushing prevents death by 
crushing relative to malicious pushing (the type of event Moriarty was 
trying to instantiate); but pre-emptive pushing causes death by crushing 
relative to no pushing at all. In other words, the inequalities in 17 and 
18 continue to hold if H, M, N, and W are interpreted as the appropriate 
event-types, rather than as singular events. But whereas claim 14 was 
used to describe an inequality such as 17, 13 was used to describe an 
inequality with the form of 18. The claims 13 and 14 appear to be 
in conflict, not because they involve different levels of causation, but 
because they are being made relative to different alternatives. 22 

Let us tum now to Cartwright's example involving the poison oak. 
In this example, we would accept the analogue of 19: 

20. The poison oak survived despite its being sprayed with ninety 
percent effective defoliant; 



THE MISHAP AT REICHENBACH FALL 271 

but not the analogue of 14: 

16. Nancy's spraying the poison oak with ninety percent effective 
defoliant caused it to survive. 

Where is the disanalogy with the Sherlock Holmes story: why do 
we accept 14 in that story, but not 16 in Cartwright's example? The 
disanalogy is that in Good's story, there is a salient alternative in which 
Holmes has virtually no chance of dying: the alternative where the rock 
is not pushed. 14 can be accepted because it can be understood as 
making a claim of causal relevance that is relative to this alternative. 
Cartwright's story lacks an analogue: there is no salient alternative in 
which the poison oak plant has virtually no chance of survival. It is 
easy enough to introduce one into the story, however. Let us suppose 
that Nancy chose between two different defoliants before spraying the 
poison oak. One of the defoliants was ninety-nine percent effective, but 
much more expensive than the weaker, ninety percent effective defoliant 
that Nancy eventually decided to use. Now that this alternative has been 
introduced, we are able to accept 16, for we can understand the contrast 
to be with the stronger defoliant. (Try saying 16 with the emphasis on 
'ninety percent' to suggest this contrast.) Because Cartwright's original 
example did not provide this salient alternative, there was, after all, a 
disanalogy between the two examples. Once the disanalogy has been 
removed, the stubborn poison oak can be treated in the same way as the 
mishap at Reichenbach Fall. 

Using the refined probabilistic theory of causation sketched above, 
we can resist the conclusion that singular and general causal claims 
describe independent species of causal relation. Claims of both types 
are used to furnish information about conditional probability functions. 
This solution requires that we refine our intuitions about claims 13 
through 16 as well as claim 19; we must understand them as being 
implicitly made relative to alternative causes. But a n y  solution to 
these problems, must involve s o m e  revision of our intuitions, for claims 
14 and 19, each intuitively correct in its own right, seem to flatly 
contradict one another. Within these constraints, the solution that has 
been advocated is respectful of the pre-theoretic intuitions evinced by 
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the stories. Moreover, the solution is not ad hoc, but independently 
motivated by the problem of disjunctive causal factors. (See Hitchcock, 
1993). 

6. OTHER PROPOSED SOLUTIONS 

In this section, I wish to review some alternative attempts to resolve the 
problems raised by the mishap at Reichenbach Fall and similar cases. 
The three accounts that I will consider have an important feature in 
common: each maintains that singular causation and general causation 
demand different philosophical theories. Each of these proposals, like 
that of the previous section, requires that we refine some of our intuitions 
about what causes what in the examples of section 4. This refinement is 
not a bad thing, for those intuitions are awfully crude. I will, however, 
impose two desiderata upon such refinements. First, they should be 
independently motivated. Second, the alternative proposals should not 
destroy the intuitions that motivate them. Since it was our unrefined 
intuitions about the examples of section 4 that seemed to create the 
need for independent theories of singular and general causation in the 
first place, the theories that embrace the independence of the two causal 
levels should leave our unrefined intuitions relatively intact. 

Sober (1985) argues that in light of examples such as those discussed 
in section 4, no probabilistic theory of singular causation can be made 
tenable. He suggests that the probabilistic theory provides a reasonable 
account of general causation, but recommends something like Salmon's 
(1984) theory of causal processes to account for causation at the singular 
level. Claim 13 is true in virtue of the probabilistic relations that hold 
between the event-types, whereas 14 is true because there is a causal 
process (the falling boulder) connecting Watson's push with Holmes' 
death. 

The presence of such a process is no doubt part of the reason that 
we are willing to accept causal claims such as 14. We noted in section 
two that our ordinary notion of causation is an 'amiable jumble'; causal 
processes and relations of probabilistic relevance may well be distinct 
but legitimate pieces of that jumble. There is no reason, however, 
to think that the line between probabilistic accounts of causation and 
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process accounts of causation will also divide general causation from 
singular causation. In particular, the causal process theory fails to 
account for the disanalogy between claims 14 and 16. When Nancy 
sprayed the plant, there were physical processes that connected the 
spraying with the live plant one month later (indeed, the plant itself 
seems to be such a process.) The problem is that the causal process 
theory is unable to provide a taxonomy of causal relevance, and that 
seems to be precisely what is needed in this case. While Nancy's 
spraying the poison oak is causally relevant to its surviving, the plant 
survived despite her spraying it (relative to the most salient alternative). 
Thus there is a need for the taxonomy of causal relevance that the 
probabilistic theory is able to provide at the level of singular causation 
as well as at the level of general causation. 

Eells (1991, chapter 6) agrees with Sober that singular causation 
and general causation demand different theories, but he offers a distinct 
probabilistic theory for singular causation. Both singular and general 
causation involve the increase of probabilities, but this increase takes 
very different forms in the two cases. In the case of general causa- 
tion, causes increase the conditional probabilities of their effects in the 
manner described in section two. (Although Eells may not embrace 
the refinement recommended there.) In the case of singular causation, 
however, the probability increase involves the trajectory of probabilities 
through time. In order to illustrate this idea, let us elaborate on Good's 
story somewhat. Let us suppose that the boulder is perched unstably on 
a small promontory, so that when it is pushed, it will fall either to the left 
or to the right. If  it falls to the left, then the probability that Holmes will 
die is 0.98; if it falls to the right, the probability that Holmes will die is 
0.02. The rock is perched so precariously that any push that is strong 
enough to dislodge it might result in its falling either way. However, by 
carefully aiming, Moriarty will be able to push the rock in such a way 
that there is a 0.917 chance that it will fall to the left, resulting in an over- 
all probability of 0.9 that Holmes will die. Watson, by trying to push the 
rock to the right, can decrease the probability of a leftward fall to 0.083. 
At the instant at which Watson begins to push the rock, the probability 
that Holmes will die becomes 0.1, lower than it was before Watson man- 
aged to beat Moriarty to the rock. 23 Very shortly after Watson pushed 
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Figure 3. The mishap at Reichenbach Fall. 

the rock, however, it teetered to the left (much to Watson's dismay) thus 
dramatically increasing the probability that Holmes would be crushed. 
(See Figure 3). It was this increase in probability that occurred shortly 
after Watson pushed the rock that renders Watson's pushing the rock 
a positive cause of Holmes' dying. By contrast, we reject claim 16 
because there was no analogous increase in the probability of the poison 
oak's survival shortly after it was sprayed by Nancy. (We assume that 
the plant's probability of survival only gradually climbed back to 1.) 

The problem with this account is that it puts exorbitant demands upon 
our intuitions. We were originally asked to accept claim t4  without the 
extra details laid out in the previous paragraph. If the boulder had fallen 
to the right (as Watson had intended) but, improbably enough, had killed 
Holmes anyway, then Eells would have it that Watson's pushing the rock 
did not cause Holmes to die. In that case, Eells would say that Holmes 
died despite Watson's pushing the rock; claim 19 would be true but 14 
false. Now it is not illegitimate to suggest refinements of our intuitions in 
cases like these, but to the extent that our pre-theoretic intuitions become 
unrecognizable in the process, the philosophical analysis receives little 
or no support from those naive intuitions, In this case, our untutored 
judgments are too imprecise to render the verdict that 14 would be true 
if the rock teetered to the left before killing Holmes, but that 19 would 
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be correct if it first teetered to the right; and thus these judgments are 
too imprecise to be telling in favour of Eells' theory. It is particularly 
troubling that Eells' theory would have us displace our naive intuitions 
about claims like 14, for it was those very intuitions that motivated the 
need for an independent theory of singular causation in the first place. 
And Eells' theory of singular causation - unlike the revised theory of 
probabilistic causation that was employed in the previous section - 
seems to have no independent motivation. 

A third approach is suggested by the theories of David Lewis (1986) 
and I. J. Good (1961-2). 24 This approach can be motivated by observing 
that singular causation seems to be transitive, while general causation 
is not. To illustrate the failure of transitivity in the case of general 
causation, we may consider an argument that was presented by a group 
of conservative Princeton alumni opposed to the role of the university's 
health services in providing contraceptives to students: 

Access to contraception causes sexual activity 

Sexual activity causes pregnancy 

.'. Access to contraception causes pregnancy 

Even if we accept the dubious first premise, the conclusion is clearly 
false. The failure of transitivity is borne out by the probabilistic theory 
of causation. Let us suppose that the probability that a Princeton under- 
graduate will engage in sexual activity if contraceptives are not made 
available is 0.4, and that the probability is 0.5 if contraceptives are 
made available. In the absence of sexual activity, there is of course no 
chance of pregnancy, but let us suppose that the probability of preg- 
nancy conditional upon sexual activity is 0.05 if contraception is used, 
and 0.7 if it is not. (These probabilities might refer to a couple having 
sexual intercourse regularly over the course of a year.) According to 
these probabilities, the two premises of the above argument are true: 
the probability of sexual activity is greater conditional upon access to 
birth control, and sexual activity increases the probability of pregnancy 
both in the presence and in the absence of contraceptive use. But there 
is another relationship to be considered: access to contraception will 
increase the probability of contraceptive use (for those who are sexually 
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active), let's say from 0.4 to 0.8. Now we can calculate the probability of 
pregnancy conditional on access to contraception, and on its negation: it 
turns out that access to contraception decreases the probability of preg- 
nancy from 0.176 to 0.09. Access to contraception prevents pregnancy 
by promoting a strong inhibitor of pregnancy, namely contraceptive 
u s e .  25 

Many believe, however, that singular causation is transitive. Per- 
haps, then, transitivity should be built into a probabilistic theory of 
singular causation. C will be a cause of E, not merely if C raises the 
conditional probability of E, but also if there is some sequence D1, D2, 
. . . ,  Dn, such that C raises the probability of DI, D1 raises the prob- 
ability of D2 . . . . .  and Dn raises the probability of E. 26 Each of these 
probabilities must be calculated by holding fixed the previous members 
of the chain. 27 We may illustrate this approach by again elaborating on 
the story of our intrepid detective and his faithful companion. Let us 
suppose now that there are three directions in which the rock might 
fall after being pushed: left, right and straight. If it falls to the left or 
right, the probability that Holmes will die is 0.98 or 0.02, as before. If, 
however, the rock falls straight off the promontory, the probability of 
crushing will be 0.3. In this version of the story, the probability that 
the boulder will fall to the right, conditional upon Watson's pushing 
the rock, is 0.714; the probability that it will fall straight is 0.286, and 
there is zero probability that it will fall to the left. Conditional upon 
Moriarty's pushing the rock, the probability that it will fall to the left 
is 0.882, straight, 0.118, and right, negligible. Again these numbers 
are such that the probability for Holmes to die is 0.1 conditional upon 
Watson's pushing the rock, and 0.9 conditional upon Moriarty's push- 
ing the rock. Let's suppose that Watson pushes the rock, which falls 
straight over the promontory and kills Holmes. Watson's pushing the 
rock increased the probability that it would fall straight, so this forms 
one link in the causal chain. Given that Watson pushed the rock, it had 
to fall either straight, or to the right; conditional on Watson's pushing 
the rock, its falling straight raised the probability that Holmes would 
die, so this forms the second link. Watson's pushing the rock caused 
Holmes to die, because it caused the rock to fall straight, which in turn 
caused Holmes to die. (Note that in this version of the story, Eells' 
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theory would render the opposite conclusion, since the probability of 
Holmes' death shortly after the time of the push was only 0.3.) 

But this theory also places high demands upon our intuitions. For 
example, if the rock had fallen to the right after Wa'~son pushed it, and 
then (improbably enough) killed Holmes, the theo12./would render the 
verdict that Watson's pushing the rock did not  cause Holmes to die. 
Similarly, in the earlier elaboration of the story, where the rock could 
only fall to the left or to the right, Watson's push would not have been 
a cause of Holmes' death no matter which way the boulder fell. This 
distinction- between cases where Watson's pushing the rock does cause 
Holmes to die and those were it does not - receives no support from 
our intuitions. A second difficulty with this theory is that it does not 
provide an account of the meaning of the 'despite' claim in 19, let alone 
a resolution of the apparent conflict between 14 and 19. 

Our intuitions about claims like 13, 14, and 19 are too unstable to 
provide knock-down refutations of theories that violate them, but this 
very instability threatens to undermine the premise upon which these 
three proposals are built. The intuitions elicited by the examples of 
section 4 are supposed to press us to admit that we cannot  apply the same 
probabilistic theory of causation to both singular and general causation; 
ironically, the account of those examples that strains our intuitions least 
- that sketched in section 2 - does  apply the same probabilistic theory 
of causation to both singular and general causation. 

7. BIG SPACES, LITrLE SPACES 

Are we done yet? We have argued that causal claims, at least inso- 
far as they describe promoting and inhibiting causes, can be under- 
stood as describing conditional probability functions of a certain sort. 
This account applies at both the singular and general level. Singu- 
lar causal claims describe probability relations between singular events 
(and also state that the named events occurred), while general causal 
claims describe formally analogous relations between generic event- 
types. But can we say more about the relationship between the two sets 
of probability relations? 
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Practitioners of probability theory are often interested in relations 
that hold between two (sets of) probability spaces. Many interesting 
probability spaces are constructed from other probability spaces. Here 
is a fairly elementary example. Suppose that we have a coin, which is 
flipped many times, and we are interested in constructing a probabilistic 
model of the various possible outcomes. Idealizing, we will assume that 
the coin is flipped infinitely often. The outcome space f~ will consist of 
sequences of H's and T's, representing sequences of outcomes of heads 
and tails. Let Xi, X2 . . . .  be a sequence of random variables such that for 

E f~, Xi(aJ) is the ith term in the sequence w, representing the result 
of the ith flip of the coin in the sequence of flips represented by ~. Thus 
the event 28 X8 = T will represent tails on the eighth flip; formally, it is 
the set of all sequences ~ that have a T in the eighth position. In this 
model, probabilities such as P(X8  = T)  - the probability of tails on the 
eighth flip - are well defined. Events such as X8 = T are analogous to 
singular events, since they represent the outcomes of particular flips of 
the coin. It makes no sense in this model to talk of the probability of tails 
simpliciter- the probability function P is simply not defined on events 
such as T, which are analogues of generic event-types. However, we 
can define distribution functions which are defined on the events H and 
T. #~ is the distribution of the variable Xi if #i(T)  = P ( X i  = T)  (and 
likewise for H). The distribution functions are themselves probability 
measures, so we now have probability measures that assign values to 
the events H and T. If we were to say that #s(T)  = 0.5, however, we 
would still be interpreted as saying something about the probability of 
tails on the eighth flip. But suppose that the variables X1, X2 . . . .  are 
identically distributed, i.e., that the distribution functions # 1, #2 . . . .  are 
identical. Let us call the common distribution function '#' .  The func- 
tion # genuinely assigns probability values to the generic events H and 
T. Moreover, # is systematically related to the original probability func- 
tion P, such that information about the assignments made by # can also 
provide information about the assignments made by P. Thus, although, 
the original probability function P is not defined on generic events 
such as T and H, attributions of probabilities to such generic events 
may still be understood as providing partial information about the 
function P. 
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Since the function P is defined on a much richer algebra of events 
than is #, we will call P together with its corresponding outcome space 
and ~r-field a 'big' probability space, and # together with its outcome 
space and a-field a 'little' probability space. Because P has a certain 
symmetry - its variables are identically distributed - it is possible to 
partially represent P in terms of the little probability space #. If the 
variables X1, X2 . . . . .  are independent, as well as identically distributed, 
then it is possible to express all of the values of P in terms of the values of 
#. Such relationships between big and little probability spaces are often 
of deep philosophical interest. For example, de Finetti ([1937] 1964) 
showed that if a sequence of variables on a big probability space satisfies 
the condition of exchangeability (which is stronger than identical distri- 
bution, but weaker than identical distribution plus independence), then 
that big probability space could be represented as a weighted average of 
simpler probability spaces. This result has important consequences both 
for the foundations of probability, and for confirmation theory. In an 
important negative result, Arthur Fine (1982) showed that a version of 
the 'no hidden variable' theorem for distant quantum correlations could 
be couched within the framework of big and little probability spaces: 
he showed that distribution functions representing certain experimental 
outcomes fail to meet a consistency condition that is necessary for their 
joint representation within a big probability space. 29 

The apparatus of interrelated big and little probability spaces allows 
us to construct a model for the relationship between singular and general 
causation. Let (f~, f ,  P)  be a probability space, and let X1,  X 2 . . . .  be 
a sequence of random variables on this space. Also, let El, E2 . . . .  be 
a sequence of events in f .  We are interested in conditional probability 
functions of the form f i ( z )  = P ( E i I X i  = z); as we noted in section 
two, these are the sorts of conditional probability functions that are 
described by claims of positive or negative causal relevance. Suppose 
that the indexing numbers correspond to individuals: David = 1, Mary 
= 2, and so on. Ei represents i's developing lung cancer, and Xi = 
n represents i's smoking n packs of cigarettes per day. Thus claims 
about the causal relevance of i's smoking for i's developing lung cancer 
describe the conditional probability function f i (  z ) = P(  E~IX~ = z ). 
(For now, we will assume that the other causally relevant factors are 
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being held fixed in the background.) For example, the claim that David's 
smoking two packs per day caused him to develop lung cancer (relative 
to his not smoking) conveys that P(E1 IX1 = 2) > P(E1 ]X1 = 0) (and 
of course it also conveys that David smoked two packs per day and that 
David developed lung cancer). 

Now we want to treat the conditional probability functions ~ in a 
fashion analogous to the way that we treat the random variables in the 
coin-tossing example; i.e., we want to find the analogue of a distribution 
for a conditional probability functionj~. It is shown in the appendix that 
it is possible to construct a probability space (f~i, f i ,  P/), such that E 
is an event in f i  and X is a random variable on f~i that is measurable 
with respect to ~i ,  and such that f i (x )  = P i ( E I X  = x). (The proof is 
fairly complex, but the idea is straightforward.) The function P~ is then 
the analogue of a distribution function. Moreover, if the conditional 
probability functions f~(x) = P(E~IX~ = z) are all identical, then the 
same space can be constructed for each one; that is, we can construct 
a space (fY, f ' ,  P ' )  such that P ' ( E I X  = x) = P(E i [X i  = x) for 
all i.30 If the causal relevance of smoking for lung cancer is the same 
from individual to individual, then it is possible to provide information 
about the probability space (f~, 5 t', P )  by describing the related prob- 
ability space (fit, ~-r pt) .  And one way to provide information about 
the latter space is by describing the conditional probability function 
f ( x )  = P ' ( E I X  = x), which is what we do when we make claims 
about the causal relevance of smoking for lung cancer. Stricter sym- 
metry conditions on P, such as analogues of exchangeability or inde- 
pendence plus identical distribution, will lead to tighter connections 
between (f~, f ,  P )  and (fY, .T t, P ' ) .  

An advantage of this model is that it predicts the grammatical form 
of general causal claims. It was noted in section 3 above that the 
paradigmatic claim of general causation has the form 'smoking causes 
lung cancer', and not 'smokings cause lung cancers', as one might 
expect if general causal claims were some kind of generalization. In 
the model sketched here, general causal claims describe the probability 
function U,  which is defined over generic events such as E and X = 1. 
These events lack subscripts, just as the event-types smoking and lung 
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cancer lack reference to any individual episodes of smoking and lung 
cancer. 

The assumption that fi (x) = P ( E i  ]Xi = x) will be independent of 
i may seem implausible; surely some people may smoke a great deal 
with virtually no chance of lung cancer while others are genetically 
prone to suffer from lung cancer regardless of their smoking habits. It 
was assumed, however, that the relevant background conditions were 
held fixed. Let us now relax that assumption. For each i, there will 

.fG 1 G 2 be a partition of possible background contexts into cells t i ,  ~,-. -J- 
Then we would not expect P ( E d X ~  = x) to be independent of i, 
for some individuals might be more likely to possess additional risk 
factors. But it is plausible that the conditional probability functions 
f i j ( x )  = P(E~IX~ = x/x G~) will be independent of i. To simply the 
notation, let Yi be a random vector such that Yi -- (x, j) is identical to 
Xi = x A G~. Then the necessary condition is thatj~(y) -- P(Ei[YI = 
y) be independent of i. This condition says that individuals will have 
identical probabilities of suffering from lung cancer, conditional upon 
their smoking the same amount, and being alike with respect to other 
causally relevant factors. Thus if David and Mary are alike with respect 
to all of the factors that are causally relevant to lung cancer, David 
will not have a different probability of lung cancer simply in virtue of 
being David, rather than Mary. This condition is nothing more than a 
probabilistic version of the principle of the uniformity of nature.31 Since 
the proof of the appendix can be generalized to include random vectors, 
we can construct a probability space (f/t, f , ,  p,)  so that P~(EIY = y) = 
P(EiIYi  = y) for all i, whenever the uniformity condition holds. 

Note that this probabilistic version of the principle of uniformity of 
nature is not to be confused with Eells' context-unanimity condition. 
That condition demanded that P(EIC /x Gi) > P(EI ~ C / x  G~) for 
every cell Gi of the relevant partition. This formulation does not incor- 
porate the refinement advocated in section 2; a liberal reformulation 
might be that the conditional probability functions f j  (x)  = P ( E I X  = 
x A Gj)  are qualitatively s imi la r -  say by increasing over a certain 
interval - for all j. One can formulate the context-unanimity require- 
ment in the language of big spaces and little spaces. Let (f~, f ,  P)  
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and (f~t, f t ,  U )  be as above. Suppose, moreover, that the little 
probability space satisfies the further constraint that for every G j, 
fj(:c) = P ' ( E [ X  = z A Gj) increases over the interval 0 < x 
_< 1. Then we can define an ensemble of even littler probability 
spaces. These will consist of probability m e a s u r e s  Pj defined on a 
~r-field that does not include the events G1, G2 . . . . .  and such that 
P j ( E I X  = x) = P ' ( E [ X  = x A Gj). Each of these littler proba- 
bility spaces includes probability relations between smoking and lung 
cancer, but excludes any reference to background conditions. The set 
of these little spaces can be treated as representing a vague probability 
relation, just as vague states of opinion are represented by sets of prob- 
ability functions in the theory of subjective probability (see, e.g., van 
Fraassen, 1989, chapter seven). Causal claims, such as that smoking 
causes lung cancer, might then be interpreted in terms of supervalua- 
tions over this set of littler probability spaces. For example, the claim 
that smoking one pack of cigarettes per day causes lung cancer (relative 
to not smoking) would be true if Pj ( E I X  = 1) > Pj ( E I X  = 0) for all 
j. I do not put forward this suggestion as an endorsement of the context- 
unanimity view, but to show that the context-unanimity view can be 
recognized as a concrete proposal about how general causal claims are 
used to describe little probability spaces. 

8. CONCLUSION 

In Hitchcock (1993) I advocated a refinement to traditional probabilistic 
theories of causation. Two features of that refinement prove useful in 
accounting for the relationship between singular and general causation. 
First, causal claims are contrastive in nature, so that positive and neg- 
ative causation are relativized to altemative causes. This observation 
enables us to deflect a class of arguments for the independence of 
singular and general causation. Second, causal claims are used to 
provide information about a certain type of probabilistic structure: the 
conditional probability function. Singular and general causal claims 
describe different probability spaces, but they describe formally similar 
structures on those spaces. Claims of singular causation describe con- 
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ditional probability functions on spaces whose events are indexed to 
specific individuals (and also assert that the physical events represented 
by those mathematical events occurred), whereas claims of general 
causation describe such functions on spaces whose events are not so 
indexed. But the probability spaces described by claims such as 1 
and 2 are very closely related, so that information about one of them 
automatically serves to describe the other (see Figure 4). 

In the introduction, we mentioned two strategies for accounting for 
the relationship between singular and general causation. One strategy 
was to begin with singular causation, and define claims of general 
causation as generalizations over claims of singular causation. This 
strategy seems to be untenable on the general grounds that singular 
causal claims imply the occurrence of events of a certain sort, while 
general causal claims do not. The second strategy was to begin with 
general causation, and to treat claims of singular causation as describing 
instantiations of general causal laws. Is this the strategy that I have 
followed? Not exactly. Note that on the account developed in Section 
7, the sorts of probability structures described by general causal claims 
will only exist when some sort of uniformity condition holds. This is 
entirely appropriate: if Mary and David are alike with respect to all 
other relevant factors, but their probabilities for developing lung cancer 
conditional upon smoking certain amounts differ wildly, then we are 
simply not able to talk about the causal relevance of smoking for lung 
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cancer. It follows that singular causation is not parasitic upon general 
causation, for the former can exist in the absence of the latter. 32 The 
strategy I have followed does not begin with one level of causation and 
then try to define the other; it treats both levels in parallel, and then tries 
to describe the relationship between them. I suspect the presupposition 
that one must proceed from the bottom up or from the top down is a 
vestige of determinism; once we move to the indeterministic context, 
neither approach looks very satisfactory. Fortunately, probability theory 
provides the resources for a new approach to this old question. 

APPENDIX 

Theorem: L e t f b e  a function from the real numbers to the unit interval 
that is measurable with respect to ~ ,  the Borel sets in R (these are the 
members of the smallest cr-field containing all of  the open intervals). 
In other words, for every Borel set B in [0, 1], f - l ( B )  = {x E R: 
f(x) E B) is a Borel set in R. Then there exists a probability space 
(f~, 9 r ,  P)  such that: there is a random variable X on f~ that is measurable 
with respect to 5 r ,  and an event E in ~', such thatfis a version of P(EIX).33 

Proof. Let f / b e  R x [0, 1]. If w E f~, then w = (x, y) with x E R 
and y E [0, 1]. Let .T" be the restriction ofT~ 2 to f~; that is, let ~" be the 
smallest a-field containing all sets of the form B1 × B2, where B1 is a 
Borel subset of  R, and B2 is a Borel subset of [0, 1 ]. Define X: f~ --. R 
by X((x, y)) = x. Let E = {(x, y) : x E R, 0 < y _< f (x)} .  )~ will be 
Lebesgue measure on the [0, 1] interval (so that ,~([a, hi) will be b - a). 
Now suppose that g is a density function on R, so that fRgdx-- 1, and let 
# be the resulting measure on Borel sets, so that #(/-/) -- fHgdX. P will be 
the product measure # × )~; in particular, P(B1 ×/32) = #(B1))~(B2). 
We will show first that E E .T'; then we sill show tha t f i s  a version of 
P(EIX). 

LetAik = {(x,y) E ft : y < (k+l)/2i, k/2 i <_ f(x) < (k+l)/2 i} 
for i ~ 1, 2 . . . .  and k =  0, 1 . . . .  2 / - i. Then Aik = f-l([k/2i,(k + 
1)/2i)) × [0, (k + 1)/2i); since each of these sets is a Borel set, Aik 
is in U. Let Ai2i = f -~(1)  × [0, 1], so this set is in 5 t" also. Now let 
Ei = Uk=o,1 ..... 2iAik. Since El is a finite union of sets in U, Ei is in 
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.T'. We will now show that E = NiEi. It will follow that E will be a 
countable intersection of sets in ~', and therefore that E is in ~ .  The 
idea is that each Ei is a union of 'rectangles' that contains E, and that 
each successive Ei is made of finer rectangles, so that the sequence of 
Ei converges on E. 

Suppose (x, y) E E. Then, by the definition of E, 0 < y < f (x )  < 1. 
Iff(x)  -- 1, then (x, y) E Ai2i C__ Ei for all i, and hence (x, y) E MiEi. 
So suppose that f(x) < 1. We can represent f(x) in binary form as 
f (x )  = ~j=1,2,... kJ 2-j.34 Pick an arbitrary i; for this i we will have 

(2j=1 ..... i kj2i-J)/2 / <_ f (x)  < ((~j=l,...,ikj2/-j) + 1)/2 i. Letting 
k = (~j=l ..... i kj2i-J), this shows that (x, y) E Aik C_ Ei. Since the 
choice of i was arbitrary, (x, y) is in every Ei, and hence in f'liEi. 

Suppose (x, y) q~E. Ify < 0, or y > 1, then it is obvious that (x, y) is not 
in NiEi. Thenlet us suppose thatf(x) <y  _< 1; say y = f(x)+e, for some 
e>0. Chooseisothat2-i < e. Forthisi, let f (x)  = ~j=l,2,...kj2-J,and 
let k = ( . ~ j = l  ..... i kj2/-j) as above. Then k/2 / <_ f (x)  < (k + 1)/2/. 
Since 2 -~ < e, y > (k + 1)/2 i, and so (x, y) q)Aik. And since k/2 / <_ 
f ( x ) < ( k + 1)/2/, ( x , y) ~ Aik, for all g ¢ k as well. Thus (x, y) ~ Ei 
and (x, y) ~ Mi Ei. This shows that E -~ Mi Ei. 

We now show that f is a version of P(EIX). Note first 
that P ( X  • H ) =  P(H x [0, 1]) = #(H))~([0, 1]) = #(H) .  The first 
equality follows from the definition of X and the second from the defi- 
nition of product measure. It follows that # is the distribution of X. f is 
measurable with respect to 7~ by hypothesis, so it remains only to show 
that 

P(E A X e H) = / H  f(x)d#(x).  

Let E I = E /x  X E H. According to a variant of Fubini's theorem, 35 
we have 

P(E') = / I t  £({Y: ( x , y ) e  E'})d#(x). 
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N o w  E t can a lso  be  wri t ten  { (x ,  Y) : x E H, y <_ f ( x ) ) .  For  x in H ,  

{y : ( x , y )  E E ' )  = {y : 0 < y <_ f ( x ) ) ,  and so ) , ({y  : ( x , y )  E 

E'})  = f ( x ) ; i f x  ~ H ,  then { y :  (x ,y )  E E ' )  = if, and A ( { y :  ( x , y )  E 
E~) )  = 0. Thus ,  as a f u n c t i o n o f x ,  )~({y : (x , y )  E E ' ) ) =  XH(x) f (x ) .  
Thus  

P ( E ' )  = 

= fH f(x)d#(x) 

QED.  
Remark. The idea  is that  f (x)  is a c o m m o n  condi t iona l  p robab i l i ty  

func t ion  on a m o r e  c o m p l e x  p robab i l i ty  space:  f ( x )  = P o (EiiXi = 
x) ,  where  the va lues  o f  these  func t ions  are independen t  o f  i. The  theo-  

r e m  shows  t h a t f c a n  be  represen ted  as a s ingle  condi t iona l  p robab i l i t y  
func t ion  f ( x )  = P ( E I X  = x) on an abst ract  p robab i l i ty  space.  T h e  

t heo rem can be  eas i ly  genera l ized  to the case  where  f is a m e a s u r a b l e  
funct ion  on R n. 

NOTES 

* Earlier versions of this paper were presented at the University of Georgia, Mas- 
sachussetts Institute of Technology, University of Michigan, University of Pittsburgh, 
and Rice University. I am grateful to audience members at all of these institutions for 
many helpful comments. 
1 Although Humean it is not Hume's because it leaves out the psychological element 
so important in Hume's own account of causation. 
2 A a-algebra is similar to a Boolean algebra, except that a ~r-algebra is closed under 
countable unions and intersections, and not merely under finite unions and intersections. 
3 Readers should consult any text on probability (such as Billingsley, 1986) for defi- 
nitions of these concepts. A brief overview is provided in the appendix of Hitchcock 
(1993). 
4 I do not presuppose that this partition is countably infinite. 
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5 Although in Eells' account one can limit the range of cells by specifying a population 
relative to which a particular causal claim is being made. 
6 Dupr6 suggests that a cause must raise the probability of its effect in a 'fair sample', 
where fairness, requires 'lack of bias with respect to independent causally relevant 
factors' (Duprr, 1984, p. 173). This means that we should compare samples where the 
cells G1, G2 . . . .  are represented in the same proportions, giving rise to the following 
account: C is a cause of E if ~ i  P ( E I C /x a 0 x P ( G O > ~ ~ P ( E ! ~ C /~ G 0 x 
P(Gi).  (Note that this is not equivalent to the inequality P ( E  IC) > P(E] ,.~ C).) This 
is equivalent to saying that P(EIC  A G~) > P ( E  I ~ C A Gi) in a weighted 
majority of the Gi, where each Gi is weighted by P(Gi) and IP(EIC A G~) - P(E] 
~ c A a 0 1 .  
7 Humphreys (1989) offers a theory of singular causation in terms of single case prob- 
abilities that is very similar to that of Eetls in its formal structure. 
s I mean here smoking precisely one pack per day, and not smoking at least one pack 
per day. Some readers have suggested to me that in common usage 'smoking one pack 
of cigarettes per day' more strongly suggests the latter. 
9 I argue in Hitchcock (1993) that the taxonomy is much richer than the dichotomous 
one suggested here. 
10 I do not here offer a theory of events and event-types. The approach I favor is that 
of Bennett (1988), according to which both facts and events are named by nominalized 
sentences. According to Bennett, causation is primarily a relation between facts, and 
only derivatively a relation between events. I agree with Bennett on this point, but have 
retained the language of events here for its greater familiarity. Within this framework, 
I take it that an event-type or its factive counterpart would be named by a nominalized 
predicate. 
11 Indeed, it is not even true that the majority of smokers develop lung cancer. This 
creates problems for Carroll's (1991) proposal, which would require that the frequency 
of living cancer among smokers be high. (I am assuming here that the frequency of 
cases in which one person's smoking causes another person to develop lung cancer 
does not make up the diff?rence.) 
12 A full assessment of this example hinges on the issue of context-unanimity, which 
we have vowed to avoid. 
53 Unless one is a strict frequentist in one's interpretation of probabilities. 
14 Wes Salmon has used this expression in discussion, although I have not found it 
in his writings. The expression comes from the dice game 'craps', in which a player 
sometimes has to roll a specific number on two dice in order to win. A player who 
needs a ten, for instance, and succeeds by rolling two fives, rather than the more likely 
combination of six and four, is said to have 'made it the hard way'. 
is There is a second type of argument which is closely related. These arguments aim 
to show the inadequacy of probabilistic theories of causation by describing examples 
in which causes lower the probabilities of their effects. The most famous example of 
this sort is Deborah Rosen's story of the miraculous birdie, related in Suppes (1970); 
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Salmon (1984) discusses similar examples. These counterexamples always involve 
cases of singular causation, however, so at best they can show that the probabilistic 
theory is inadequate as a theory of singular causation. Since the probabilistic theory 
is plausible as a theory of general causation, these arguments can also be construed as 
supporting the independence of singular and general causation. 
16 I take some liberties in setting Good's story at this locale. Doyle's Holmes nearly 
met his end there at the hands of the evil Moriarty. (It was Doyle's intent to kill Holmes, 
but the public demanded that he be brought back, and thus the events at Reichenbach 
Fall were re-told so as to make Holmes' death only apparent.) Since Hans Reichenbach 
was the first to propose a probabilistic theory of causation, it seems only fitting that the 
story take place at a site that shares his name. 
17 These names are intended as abbreviations only; I do not mean to imply that they 
pick out the casually relevant features of the events in question. 
18 I realize that intuitions about 13 and 14 are not univocat, but bear with me; the 
account developed later will be able to explain the confusion of our intuitions. 
~9 Note that the neo-Humean cannot say that we have not yet found the general causal 
law under which 14 is subsumed. The events named in 14 do instantiate the event-types 
named in 13, so if the neo-Humean view is correct, a relation of negative causation 
must hold at the singular level as well. This points to another problem that faces the 
neo-Humean view (but only if it is combined with a Davidsonian theory of events): if 
we allow probabilistic causal laws as well as deterministic ones, then the same pair of 
singular events may instantiate two competing causal laws. If smoking causes heart 
attacks and exercise prevents them, what are we to say about a smoker who exercises? 
This problem is similar to the problem of epistemic relativity faced by Hempel's (1965) 
Inductive-Statistical model of explanation. 
20 Cartwright's intention was only to show that causation could not be reduced to 
probabilities without remainder. 
21 Eells (1991) uses 'despite' to express negative causal relevance at the singular level, 
and this seems to accord reasonably well with normal English usage. Note that we 
cannot use 'prevent'  in this context. Just as 'cause', when used at the singular level, 
implies that the two named events occurred, 'prevent' at the singular level implies that 
one of the named events occurred, and the other did not. 
22 And we are now able to understand why our intuitions were muddy to being with: 
claims t 3 and 14 are ambiguous unless an alternative is specified. 
23 Let us assume that when Watson arrived, he and Moriarty had an equal chance to 
push the rock. Then the overall probability of Holmes' dying was 0.5. 
24 The theories of Good and Lewis are quite different. Lewis (1986) offers a proba- 
bilistic generalization of his counterfactual theory of causation. Good offers a measure 
of the extent to which one event caused another. What the two theories have in common 
is an emphasis on the role of causal chains. 
25 See Eells and Sober (1983) and Eells (1991, chapter 4) for extensive discussion of 
questions of transitivity of general causation. 
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16 Menzies (t989) shows that this condition is not sufficient, and offers a refinement, 
but the details need not concern us here. 
27 For this reason, Salmon (1984) calls this approach the method of successive recon- 
ditionalization. 
28 Recall that 'event'  is a measure-theoretic term for an element of a cr-field over which 
a probability function is defined. The coincidence of terminology is both fortuitous and 
dangerous, but I will not deviate from standard usage here. 
z9 For a similar proof dealing with a hypothetical example, see Suppes and Zanotti 
(1981). 
30 One could do this by taking the restriction of P to the a-field generated by Ei and sets 
of the form Xi E H for some i, but this would raise doubts about whether the resulting 
probability space is :really an abstract representation of the common conditional proba- 
bility functions. 
31 Indeed, one is tempted to say that the uniformity condition holds automatically, since 
if David and Mary's chances for lung cancer still differ after holding fixed their level 
of smoking together with other background factors, one can argue that the chances are 
themselves causally relevant properties with respect to which they differ. Alternately, 
one who interprets probabilities as hypothetical frequencies within reference classes 
will not even be able to make sense of the possibility that John and Mary's probabilities 
for lung cancer differ when they are alike in all relevant respects. For now, however, I 
am contented to let the uniformity condition remain as an empirical hypothesis. 
32 As remarked in the Orevious footnote, however, this scenario cannot arise for one 
whose account of single-case probability is parasitic upon statistical frequencies. With- 
in such a framework, the account developed above is a version of the neo-Humean 
strategy. Thus the question of how to interpret the probabilities is an important one, but 
it must wait for another day. 
33 See Breiman (1968) or another advanced text on probability for the definition of a 
generalized conditional probability function. 
34 If more than one representation is possible, choose the one that is last in lexical order. 
For example, 1/2 may be represented as 0.1000 . . .  or as 0.0111 . . .  ; we would use the 
former binary expansion. 
35 See Billingsley (1986, ch. 18). 
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