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ABSTRACT

This paper describes an alternative to the common view that explanation in the special
sciences involves subsumption under laws. According to this alternative, whether or not
a generalization can be used to explain has to do with whether it is invariant rather than
with whether it is lawful. A generalization is invariant if it is stable or robust in the sense
that it would continue to hold under a relevant class of changes. Unlike lawfulness,
invariance comes in degrees and has other features that are well suited to capture the
characteristics of explanatory generalizations in the special sciences. For example, a
generalization can be invariant even if it has exceptions or holds only over a limited
spatio-temporal interval. The notion of invariance can be used to resolve a number of
dilemmas that arise in standard treatments of explanatory generalizations in the special
sciences.
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1 Introduction
A central problem in the philosophy of the special sciences concerns the nature
and status of explanatory generalizations in those disciplines. Many philoso-
phers are committed to anomotheticconception of explanation according to
which all successful explanations must appeal to laws. The standard assump-
tion about laws is that they are exceptionless generalizations meeting various
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other familiar conditions—they must contain only qualitative predicates,
support counterfactuals, and so on. Together these assumptions generate a
dilemma. On the one hand, most of us believe that the special sciences some-
times succeed in providing explanations. On the other, it looks as though most
generalizations in the special sciences fail to conform to the standard criteria
for lawhood—for example, they are not exceptionless and hold at best over
limited domains or spatio-temporal intervals. The usual strategy for resolving
this difficulty is to argue, despite all appearances to the contrary, that expla-
natory generalizations in the special sciences do meet, or somehow serve as
stand-ins for generalizations that meet, the standard conditions for lawhood.
The appeal of this strategy lies not in its inherent plausibility but rather in the
difficulty of formulating a defensible alternative to the nomothetic conception
of explanation.

This paper explores a new way out of this dilemma. It will argue that we
need to rethink both the nomothetic conception of explanation and the standard
conditions for lawhood, at least in so far as these are taken to provide criteria
for distinguishing explanatory from unexplanatory generalizations. The stan-
dard framework suggests that there are just two, mutually exclusive possi-
bilities: either a generalization is a law or else it is purely accidental. Most
explanatory generalizations in the special sciences do not fit comfortably into
either of these two categories. What we need is a new way of thinking about
generalizations and the role that they play in explanation that allows us to
recognize intermediate possibilities besides laws and accidents and to dis-
tinguish among these with respect to their degree or kind of contingency. This
account should also allows us to understand how a generalization can play an
explanatory role even though it holds only within a certain domain or over a
limited spatio-temporal interval and has exceptions outside of these.

The alternative account I will propose rests on several key ideas. The first is
a claim about explanation: explanatory relationships are relationships thatin
principlecan be used for manipulation and control in the sense that they tell us
how certain (explanandum) variables would change if other (explanans) vari-
ables were to be changed or manipulated. The qualification ‘in principle’
means that what matters for the purposes of explanation is not whether the
manipulation in question can actually be carried out but rather whether the
putative explanatory relationship correctly describes what would happen on
the (possibly counterfactual) supposition that the manipulation is carried out.

Second, given this conception of explanation, it follows that whether or not a
generalization can be used to explain has to do with whether it isinvariant
rather than with whether it is lawful. A generalization is invariant if (i) it is, in a
sense I will try to make more precise below, change-relating and (ii) it is stable
or robust in the sense that it would continue to hold under a special sort of
change called anintervention. When invariance is so characterized, some laws
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turn out not to be invariant because they are not change-relating. Hence some
laws are not explanatory. More importantly, there are many examples of
invariant relationships that are not laws. Appeal to laws is thus neither
sufficient nor necessary for successful explanation. In contrast to the standard
notion of lawfulness, the notion of invariance is well suited to capturing the
distinctive characteristics of explanatory generalizations in the special
sciences. A generalization can be invariant within a certain domain even
though it has exceptions outside that domain. Moreover, unlike lawfulness,
invariance comes in gradations or degrees.

As remarked above, to characterize invariance we need the notion of an
intervention which we can think of as an idealized experimental manipulation.
An intervention is an exogenous causal process that changes some variable of
interestX in such a way that any change in some second variableY occurs
entirely as the result of the change inX. On the conception I will be defending,
we may think of explanation as having to do not with subsumption under laws
but rather with the exhibition of patterns of counterfactual dependence of a
special sort, involvingactive counterfactuals—counterfactuals the antece-
dents of which are made true by interventions. Only invariant generalizations
will support active counterfactuals—hence the connection between explana-
tion and invariance.

Before turning to details, a few general remarks about the scope of this paper
are in order. First, the account that follows is intended as an account of causal
explanation and attempts to capture a notion of explanation according to which
to explain is to cite causes. It is not intended as an account of non-causal forms
of explanation, if there are such. Second, I will focus on cases in which
generalizations are used to explain explananda that are at least implicitly
general or repeatable. I will ignore issues about the structure of singular
causal explanations in which what is explained is a particular event and
problems of explanatory (or causal) overdetermination or pre-emption that
arise in connection with such explanations.

2 Interventions
I begin with the notion of an intervention. Heuristically, one may think of an
intervention as an idealization of an experimental manipulation carried out on
some variableX for the purpose of ascertaining whether changes inX are
causally or nomologically related to changes in some other variableY. How-
ever, as we shall see shortly, any process, whether or not it involves human
beings or their activities, will qualify as an intervention as long as it has the
right causal characteristics. The idea we want to capture is roughly this: an
intervention on some variableX with respect to some second variableY is a
causal process that changesX in an appropriately exogenous way, so that if a
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change inYoccurs, it occurs only in virtue of the change inX and not as a result
of some other set of causal factors.

Suppose that one wants to know whether treatment with some drug is
effective in producing recovery from a disease. We may represent the treat-
ment received by an individual subjecti by means of a binary variableT that
takes one of two values 0 and 1 depending on whetheri does or does not receive
the drug. Similarly, recovery may be represented by means of a variableR
taking values 0 and 1, depending on whether or not individuals with the disease
recover. Intuitively what one wants to know is whether if some subjecti who
has not received the treatment and who suffers from the disease (for whomT(i)
= 0 andR(i)= 0) were to be given the drug (i.e. ifT(i) were to be changed to 1),i
would recover or would be more likely to recover (whetherR(i) would be
changed to 1). Obviously, one cannot investigate this question by both giving
the treatment to and withholding it from the same subject. However, one may
employ a more indirect method: divide the subjects with the disease into a
treatment and control group, intervene by giving the drug to the former and not
the latter, and then observe the incidence of recovery in the two groups. The
experimenter’s interventions (which we may represent by means of an inter-
vention variableI) will thus consist in the assignment of values ofT to
individual subjects. Obviously, these interventions must meet various further
conditions if the experiment is to tell us anything about the efficacy ofT.
First, if the experimenter’s interventionsI are correlated with some other
cause of recovery besidesT, this may undermine the reliability of the
experiment. This would happen, for example, if the patients in the treatment
group were much healthier than those in the control group. However, it would
be too strong to require thatI (or T) be uncorrelated with all other causes ofR.
As long asT is efficacious,I andT will be correlated with other causes ofR
that are themselves caused byI or byT. For example, if treatment by the drug
does cause recovery and does so by killing (K) a certain sort of bacterium,
then it will be no threat to the validity of the experiment if the experimenters’
interventionsI are correlatedK, even thoughK causally affectsR. What we
need to rule out is the possibility that there are causes ofR that are correlated
with I or caused byI, and that affectR independently of theI→T→K→R
causal chain.

A third condition is thatI should not directly affect recovery independently
of T but only, if at all, through it. This means, among other things, thatI must
not be a common cause of bothTandR. This condition would be violated if, for
example, the subjects learn whether or not they have been assigned to the
treatment group and the control group and this has a placebo effect—an effect
on R that is independent of any effect ofT itself on R. (Perhaps those in the
treatment group are made more hopeful by the fact that they are in this group
and those in the control group are discouraged.) In this caseI directly affectsR
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independently ofT and we will not be able to reach reliable conclusions about
the effect ofT on R.

Assembling these requirements together, we are led to the following char-
acterization: Suppose thatI is an intervention on (or manipulation of) the
variableX, whereX is some property possessed by the uniti, the intent being to
assess some postulated relationship (G) according to which changes inX cause
or explain changes in some other variableY by observing whether the inter-
vention onX produces the change inY predicted by (G). Call the value ofX
possessed byi prior to the interventionx0 and the value after the intervention
x1. ThenI should have the following conjunction of features (M):

M1) I changes the value ofX possessed by i from what it would have been in
the absence of the intervention (i.e.x1 Þ x0) and this change inX is entirely
due toI.

M2) The change inX produced byI is claimed by (G) to change the value of
Y. That is, according to (G), the value,y0, that Y takes whenX = x0, is
different from the value,y1, thatY takes whenX= x1.

M3) I changesY, if at all, only throughX and not directly or through some
other route. That is,I does not directly causeY and does not change any
causes ofY that are distinct fromX except, of course, for those causes ofY, if
any, that are built into theI–X–Yconnection itself; that is, except for (a) any
causes ofY that are effects ofX (i.e. variables that are causally betweenX
andY) and (b) any causes ofY that are betweenI andX and have no effect on
Y independently ofX. In addition,I does not change the causal relationships
betweenYand its other causes besidesX. Moreover, a similar point holds for
any causeZ of I itself—i.e.Z must changeY, if at all, only throughX and not
through some other route.

M4) I is not correlated with other causes ofYbesidesX (eithervia a common
cause ofI andY or for some other reason) except for those falling under
(M3a) and (M3b) above.

There are several features of this characterization that are worth noting.
First, as advertised above, the characterization makes no essential reference to
human activities or to what human beings can or can’t do. A causal process that
does not involve human beings at any point will qualify as an intervention as
long as it meets conditions M1–4. Indeed, it is precisely this sort of possibility
one has in mind when one talks about a ‘natural experiment’.

A second issue concerns circularity. The characterization (M) employs
causal language at a number of points—not only must the interventionI
cause a change in the variableX, but I must not itself directly causeY, must
not be correlated with other causes ofY that are independent of the putative
I→X→Y chain, and so on. Because the notion of an intervention is already a
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causal notion, it follows that one cannot appeal to it to explain what it is for a
relationship to be causal or nomological (or invariant) in terms of concepts that
are themselves entirely non-causal or non-nomological. Nonetheless, it is
important to understand that the characterization is not viciously circular in
the sense that the characterization of an intervention onX with respect toY
itself makes reference to the presence or absence of a causal relationship
betweenX and Y. Instead the characterization makes reference toother
causal relationships—to the existence of a causal relationship betweenI and
X and to the distribution of other possible causes ofY besidesX. The char-
acterization (M) thus fits with a non-reductive account of causal and nomolo-
gical relationships and of how we infer to the existence of such relationships.
The fundamental idea is that we can explain what it is for a relationship
betweenX andY to be causal or nomological (or invariant) by appealing to
facts aboutothercausal or nomological relationships involvingX andYand to
non-causal correlational facts involvingX and Y. That there is a coherent
notion of an intervention to be captured, and that some explication of this
notion that is not viciously circular must be possible, is strongly suggested by
the fact that we do seem to sometimes find out whether a causal or nomological
relationship exists betweenX andY by manipulatingX in an appropriate way
and determining whether there is a correlated change inY. This fact by itself
seems to show that we must have some notion of a manipulation ofX that
would be suitable for finding out whetherX is causally or nomological linked to
Y, and that this notion can be characterized without presupposing that there is a
causal or nomological relationship betweenX andY. It is just this notion that
(M) attempts to capture.

A third issue concerns clause (M1). This says that carrying out an interven-
tion onX requires that there be a well-defined notion of changing the value ofX
possessed by some individual in such a way that the very same individual is
caused by the intervention to possess a different value ofX. One consequence
of (M1) is that there is no well-defined notion of an intervention with respect to
properties or magnitudes that, for logical or conceptual reasons, can only take
one value. For example, if everything that exists is necessarily a physical
object there is no well-defined notion of intervening to change whether some-
thing is a physical object. Even with respect to variables that can take more
than one value, the notion of an intervention will not be well defined, if there is
no well-defined notion of changing the values of that variable for a particular
individual. For example, we might introduce a variable ‘animal’ which takes
the values {trout, kitten, raven} but if, as I suspect, we have no coherent idea of
what it is to change a raven into trout or kitten, there will be no well-defined
notion of an intervention for this variable. This restriction on the notion of an
intervention to variables for which there is a well-defined notion of change is
both implicit in the notion of an intervention itself and also follows from our
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guiding idea that explanatory relations are relations that can be used for
manipulation and control. If there is no well-defined notion of changing the
value ofX, we cannot, even in principle, manipulate some other variable by
changingX. Similarly, unless as (M2) requires, the contemplated intervention
on X is, according to the generalization we are assessing, associated with a
change inY, this generalization will not tell us how intervening onX can be
used to manipulateY. As we will see below, both (M1) and (M2) have
important consequences for the sorts of generalizations that can figure in
explanations.

It will help to clarify the notion of an intervention if we consider an
additional example. Suppose that, in a certain region, changes in atmospheric
pressure (A) are a common cause and the only cause of the occurrence of
storms (S) and of the reading (B) of a particular barometer and that there is no
direct causal relationship betweenB andS. Imagine that we are ignorant of the
causal structure of this system and wish to find out whetherB directly causesS
by changingB and ascertaining whether there is a corresponding change inS. It
is clear that certain ways of changingBare inappropriate for this purpose. If we
changeB by changingA, or by means of some causal process that is perfectly
correlated with changes inA, thenSwill also change, but this will not establish
that there is a causal relationship betweenB andS. Similarly, if we changeB
via some process that directly affectsS. None of these ways of changingB will
qualify as interventions onB for the purpose of ascertaining whether there is a
causal relationship betweenB andS—they run afoul, respectively, of clauses
(M3) and (M2) in (M).

By contrast, suppose that we employ a random number generator which is
causally independent ofA and, depending just on the output of this device,
repeatedly physically fix the barometer reading at different values by moving
the dial to either a high or low reading and driving a nail through it. Suppose
that this procedure results in repeated settings of the dial that are uncorrelated
with A. If—as it seem reasonable to believe—this procedure satisfies the other
conditions in (M), repetitions of it will count as interventions onB with respect
to S. This illustrates the sense in which interventions involveexogenous
changes—such changes in theA–B–S system are exogenous in the sense
that they do not operate throughAor through processes correlated withA. Such
changes break or disrupt the previously existing endogenous causal relation-
ship betweenA and B since the state ofB is now set by the intervention,
independently ofA. When the barometer reading is changed in this way, what
we expect of course is that the previous association or correlation betweenB
andSwill break down or disappear (that it will be non-invariant) and hence that
the relationship betweenB andSwill fail to qualify as a causal or nomological.

Given that our ultimate interest is in characterizing what it is for there to be a
causal or explanatory relationship betweenX and Y, why not drop any
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reference to interventions onX and simply talk directly about the nature of the
relationship betweenX andY? As I see it, invoking the notion of an interven-
tion (and the closely connected notions of invariance and active counterfactual
dependence) has several important advantages. First, to say simply that forX to
cause or figure in an explanation ofY, there must be a causal or explanatory
relationship betweenX and Y is to move in a very small and completely
unilluminating circle. What we want is some sort of independent purchase
on what it is for theX-Yrelationship to be causal or explanatory and this is what
talk of the behavior ofYunder interventions onX is intended to provide. (That
this genuinely provides an independent purchase is shown by the fact that we
can use the behavior ofYunder interventions onX to discover whether there is
causal or explanatory relationship betweenX andY—something that, as noted
above, would be impossible if to recognize such behavior we already had to
know whether there is a causal relationship betweenX andY.) As the example
in the immediately preceding paragraphs illustrates, some variables (e.g.B and
S) will be correlated (and in this sense the value of one will depend on the value
of the other) even though neither causes nor figures in an explanation of the other
while other variables (e.g.A andS) will be correlated and causally and expla-
natorily related. Invoking the notion of an intervention gives us a way of
distinguishing between those sorts of correlations and dependencies that reflect
causal and explanatory relations and those that do not. Of course what matters
for whetherX causes or explainsY is the ‘intrinsic’ character of theX–Y
relationship but the attractiveness of the notion of an intervention is precisely
that it provides an extrinsic way of picking out or specifying this intrinsic feature.

A second advantage of the characterization offered above is that it makes it
the epistemological role of experimentation in establishing causal and expla-
natory relationships particularly transparent. While it is no part of my view that
the only way we can establish whether there is a causal relationship betweenX
and Y is by actually carrying out an intervention onX and observing the
response ofY, it is uncontroversial that this is a particularly effective way of
establishing causal relationships. The account described above explains why
this should be so, since it builds claims about behavior under interventions
into the very content of causal claims. The epistemological role of experi-
mentation is considerably less clear on alternative accounts of causation and
explanation.1
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3 Invariance
Once we have the notion of an intervention, we can use it to characterize more
precisely the notion of invariance under interventions, which I take to be the
key feature that a generalization must possess if it is to play an explanatory role
or to describe a causal or nomological relationship. The general idea of
invariance is this: a generalization describing a relationship between two or
more variables is invariant if it would continue to hold—would remain stable
or unchanged—as various other conditions change. The set or range of
changes over which a relationship or generalization is invariant is itsdomain
of invariance. As we will see in more detail below, invariance is a relative
matter—typically a relationship will be invariant with respect to a certain
range of changes but not with respect to other changes.

It is useful to distinguish two sorts of changes that are relevant to the
assessment of invariance. First, there are changes in what we would intuitively
regard as the background conditions to some generalization—changes that
affect other variables besides those that figure in the generalization itself. For
example, in the case of a system of masses conforming to the gravitational
inverse square law (1)F = Gm1 m2/ r2, changes in the position or velocity of the
system as a whole which do not change the relative positions of the masses will
count as a changes in background conditions, as will a change in the color of
the masses or their electrical charge, or the Dow–Jones Industrial average. The
inverse square law is invariant under changes in all these background
conditions.

Second, there are changes in those variables that figure explicitly in the
generalization itself—for example, in the case of (1), mass and distance. An
important subclass of such changes are changes that result from an intervention
(in the sense specified in section1) on the variables figuring in the general-
ization. The gravitational inverse square law is invariant not just under changes
in background conditions but also under a wide range of interventions that
change the distances between gravitating masses or the magnitudes of the
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just is what it is forX to causeY. For example, when we attempt to infer to causal conclusions on
the basis of non-experimental data, as is the case with the structural equation methods discussed
in Section12, what we are trying to do is to use such data to infer what would happen if a
hypothetical experiment were to be carried out. The account I present is thus intended as a
characterization of the metaphysics of causation (or of the truth conditions for causal claims) and
not just as an account of one way of finding out about causal relationships.

It is also worth noting in this connection that theories that attempt to provide an account of the
metaphysics of causation that does not appeal to the notion of behavior under an intervention
have their own costs—they lack any plausible connection with the epistemology of causation.
For example, if, as Salmon ([1984]) holds, the metaphysics of causation involves spatio-
temporally continuous processes that transfer energy and momentum, then we require some
account, which Salmon does not provide, of why experiments are a good way of finding out about
causal processes so conceived and which experiments are the appropriate ones to consider. The
well-known criticisms of Salmon in Kitcher ([1989)] exploit this point. The intervention based
account avoids such difficulties.



masses themselves. We will see later that this is crucial to its explanatory
status. I will say that a generalization is invariantsimpliciter if and only if (i)
the notion of an intervention is applicable to or well-defined in connection with
the variables figuring in the generalization (see below) and (ii) the general-
ization is invariant under at least some interventions on such variables. In other
words, for a generalization to count as invariant there must exist some inter-
ventions (satisfying the conditions (M1)–(M4)) for variables figuring in the
relationship under which it is invariant. To count as invariant it isnot required
that a generalization be invariant under all interventions. For brevity, I will
often speak of a generalization as ‘invariant under interventions’ as shorthand
for ‘invariant under some interventions on variables explicitly figuring in the
generalization’.

The generalization (1) is naturally regarded as a generalization that relates
changes—it describes how changing the magnitudes of two masses or the
distance between them will change the gravitational force they exert on each
other. Other generalizations, including some we may regard as laws, are not
naturally interpreted as true descriptions of relationships between changes.
Such generalizations fall into several categories. First, there are generaliza-
tions that, to put it loosely, do not tell us how to produce certain changes but
rather that they are impossible. Consider the generalization (2) ‘No material
object can be accelerated from a velocity less than that of light to a velocity
greater than that of light’. This generalization does not tell us, as (1) does, how
changes in one set of variables will produce changes in another set of variables.
Instead, it rather tells us, in effect, that there are no physically possible changes
that will produce a change from subluminal to superluminal velocities.

As explained above, it is a consequence of clause (M1) in (M) that the notion
of an intervention (and hence the notion of invariance under interventions) is
well defined only for change-relating generalizations. If a generalization (G)
relates some variableX to some other variableYbut it makes no sense to speak
of changing the value ofX for some individual to a different value, then there
will be no well-defined notion of an intervention for that variable. The notion
of an intervention does not seem to be well defined in connection with (2). In so
far as the notion of a material object in (2) contrasts with anything at all, it
presumably contrasts with the notion of a pseudo-process in the sense of
Salmon ([1984]). It is arguable that there is no well-defined notion of changing
a pseudo-process into a material object orvice versaand if so, (2) will not be
invariant in the sense described above. Moreover, even if the latter change
(from material object to pseudo-process) were well defined, it would fail to
satisfy clause (M2) in the characterization of an intervention since (2) does not
predict that the object so altered would change its velocity from sub- to
superluminal. That is, what (2) claims is simply that material objects
cannot undergo a certain change—it says nothing at all about the behavior
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of non-material objects, if there are any. There is, to be sure, another, intuitive
sense in which is (2) highly invariant—there are no physically possible
changes (nothing that we or the rest of nature might do) that will disrupt it.
It is at least in part for this reason that we think of it as a law. However, it is not
invariant under interventions on the variables figuring in the relationship in the
sense defined above and hence is not explanatory (cf. Section4, fn. 3).

A second possibility is illustrated by the generalization (3) ‘All men who
take birth control pills regularly fail to get pregnant’ (cf. Salmon [1971]). There
are at least two possible ways of understanding this generalization. First, it may
be understood as a generalization that does not even purport to be change-
relating. Interpreted in this way, (3) does not claim that changes in whether or
not men take birth control pills are correlated with changes in whether or not
they become pregnant but only that male pill-takers do not get pregnant. It says
nothing about whether males who do not take birth control pills will get
pregnant. Under this interpretation, (3) is true but there is no well-defined
notion of an intervention associated with it and it fails to be invariant for this
reason. Second, (3) may be interpreted as claiming that the correlation
described above does hold. Under this interpretation, while there is a well-
defined notion of intervention associated with (3) (one can intervene to change
men who are pill-takers to non-pill-takers andvice versa), (3) is false, since the
claimed correlation fails to hold: whether or not a male takes birth control pills
is not correlated with whether he becomes pregnant. Intuitively, (3) cannot be
used to explain why some particular man fails to get pregnant, because taking
birth control pills is irrelevant to whether a man becomes pregnant. We will see
in Section4 how the fact that (3) is not an invariant change-relating general-
ization underlies this judgment of irrelevance.

When a generalization like (1) that relates changes is invariant under
interventions on variables figuring in the relationship, it describes a relation-
ship that is hypothetically exploitable for purposes of manipulation and con-
trol—hypothetically exploitable in the sense that although it may not always
be possible, as a practical matter, to intervene to change the values of the
quantities described by the variables that figure in the generalization, we can
nonetheless think of the generalization as telling us thatif it were possible to
change those values, one could use them to change others. Thus, for example,
because the gravitational inverse square law is invariant under a range of
interventions that change mass and distance, it tells us how, if we or some
natural process were to manipulate these quantities in some system of grav-
itating masses, the gravitational force they exert would change in a systematic
way. Similarly, because (4), the ideal gas lawPV = nRT, is invariant under a
range of interventions that change temperature, it correctly describes how, by
manipulating the temperature of a gas and holding its volume constant, one
could change its pressure.
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Why does it matter whether a generalization is invariant under (at least
some) interventions on the variables figuring in the relationship as opposed to
merely being invariant under some changes in background conditions? The
reason is that any generalization, no matter how ‘accidental’, non-lawful, non-
causal or unexplanatory, will be stable or will continue to hold under some
changes in background conditions—for example, under changes in conditions
that are causally independent of the factors related by the generalization. Thus,
special circumstances aside, a paradigmatic accidental generalization like

(5) All the coins in Bill Clinton’s pocket on January 8, 1999 are dimes.

will continue to describe correctly the contents of Clinton’s pockets on this
date under many possible changes in background conditions. For example,
presumably (5) will be stable under changes in the position of Mars, the
leadership of China, or the barometric pressure in Paris, and so on. Similarly,
the generalization (6), describing the relationship between the barometer
readingB and the onset of a stormS considered in Section2, will be stable
under many changes in background conditions.

The feature that distinguishes generalizations like (5) and (6) from general-
izations like (1) and (4) is that (5) and (6) are not invariant under interventions
on the variables that explicitly figure in them and do not describe relationships
that tell us how by manipulating one variable we may change or manipulate
another—they do not describe relationships that are hypothetically exploitable
for purposes of manipulation and control. To see this consider what an
intervention would involve in the case of (5). To apply the characterization
(M) to (5) we must interpret (5) as a change-relating generalization—i.e. as
claiming that changing whether or not a coin is located in Clinton’s pocket
changes whether or not it is a dime. More specifically, think ofX as a variable
that measures whether or not a coin is located within Clinton’s pocket andYas
a variable that measures whether or not it is a dime. According to clause (M2)
in (M) for the introduction of a coin into Clinton’s pocket to qualify as
intervention, the coin must be such that (G) claims that its value would
change if its location were changed from being outside Clinton’s pocket to
being inside. The introduction of a dime into Clinton’s pocket will not meet
this condition but the introduction of a penny would. However, (5) is plainly
not invariant under such interventions—the introduction of non-dimes into
Clinton’s pocket will not transform them into dimes. More generally, (5) is not
invariant under any interventions on the variableX. A similar point holds for
(6). As observed in Section2, (6) is not invariant under interventions that
consist in manipulating the barometer dial. While (4), the ideal gas law, tells us
how we can make the pressure or volume of a gas change by changing its
temperature, we cannot change non-dimes into dimes by introducing them into
Clinton’s pocket. And we cannot alter whether or not storms occur by fiddling
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with barometer dials. I will suggest below that this difference between (5) and
(6), on the one hand, and (1) and (4), on the other, is crucial to their explanatory
status.

4 Explanation
I suggested above that explanation requires appeal to invariant generalizations.
In this section I want to sketch an account of explanation that supports this
suggestion.

Consider a gas enclosed in a rigid container of volumeV* which under goes
a temperature increase toT* in virtue of being connected to a heat source. If we
want to provide a simple but none the less genuine explanation of (7), why the
pressure of the gas increases toP*, it seems relevant to cite the new tempera-
ture T*, the constant volumeV* and the ideal gas law (4). According to an
account of explanation which I have defended in more detail elsewhere
(Woodward [1979], [1984], [1997]), this information is explanatory because
it can be used to answer a range of counterfactual or what-if-things-had-been-
different questions about the explanandum (7). What I mean by this is that the
generalization (4) can be used, in conjunction with information about the
‘initial conditions’ of the gas (the fact that it has temperatureT* and volume
V*) to show how the explanandum (7) would change, if these initial conditions
were to change in various ways. That is, not only can (4) be used, in conjunc-
tion with information about the initial conditions of the gas to show that the
explanandum (7) ‘was to be expected’, as the traditional DN model demands,
but (4) can also be used to tells us how the pressure of the gas wouldchange—
how the pressure would have been different—if the temperature had instead
increased or decreased to a different valueT** or if the volume of the container
had changed to a different valueV** . In this way the explanation in terms of (4)
locates the explanandum (7) within a space of alternative possibilities (other
possible values for the pressure that might have occurred) and shows us how
which of these alternative possibilities is realized systematically depends on
the initial temperature and volume of the gas. In seeing how the actual pressure
P* would have been different, had the actual temperatureT* and volumeV* of
the gas been different, we see in detail how the pressure depends on these
factors and how they are explanatory relevant to the pressure. In short, we can
think of the explanation that appeals to (4) as exhibiting a systematic pattern
of counterfactual dependence of the pressure of the gas on its temperature
and volume. The exhibition of such a pattern is at the heart of successful
explanation.

Consider another example. The gravitational inverse square law allows us to
see how the gravitational force between two or more objects would have been
different had the distances between these objects or their masses had been
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different in various ways. In combination with the Newtonian laws of motion,
this information allows us to see that, given an object with a certain mass,
initial position and velocity, it will follow a certain trajectory under the
gravitational influence of a second object. However, these laws also enable
us to see how this trajectory would change given changes in these initial
conditions or in the mass of the attracting object. For example, we can use
the inverse square law and the equations of motion to see how under certain
conditions the first object will follow an elliptical orbit about the second, how
under other conditions it will spiral into the second and so on. In this way we
see how the actual trajectory depends on these factors and in seeing this we
come to understand why the actual trajectory took the form it did.

The intuitive attractiveness of the idea that explanation has to do with the
exhibition of systematic patterns of counterfactual dependence is further
reinforced by the fact that we usually think of explanation as having to do
with the exhibition of causal relationships and it seems undeniable that there is
a close connection between causal relationships and counterfactuals. If expla-
nations cite causes, it seems very plausible that some form of counterfactual
theory of explanation must be correct.

However, familiar difficulties with counterfactual theories of causation also
remind us that there is an obvious objection to such a proposal: there are
relationships of counterfactual dependence which are not causal or explana-
tory. For example, assuming that the barometer–storm–atmospheric pressure
system of Section2 operates deterministically and thatA is the only cause ofB
andS, it looks as though there is a perfectly good sense in which it is true that

(8) If the readingB of the barometer were falling, a storm would occur

and also true that

(9) If the readingB were rising, there would be no storm

However, despite the fact thatScounterfactually depends onB, Bdoesn’t cause
Sand one can’t appeal toB to explainS.

We can deal with this difficulty by appealing to the ideas introduced in
Section2. As explained earlier, the correlation betweenB andSis not invariant
under interventions onB. While there is (arguably) an interpretation of the
counterfactuals (8) and (9) according to which they are true, there is also
natural interpretation of the counterfactual

(10) If an intervention were to occur which lowers (increases)B, then the
storm would occur (not occur)

according to which it is false. This is the interpretation we adopt when we take
(10) to be claiming that an intervention onB would be a way of controlling or
manipulating or changing whether or not a storm occurs and that the previously
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obtaining correlation betweenB andS would be invariant under such inter-
ventions. Let us say that when (10) is interpreted in this way, it is anactive
counterfactual. This reading contrasts with thepassiveinterpretation of the
counterfactuals (8) and (9) appealed to above which carries with it no such
claim about would happen toSunder interventions onB. My claim is that the
kind of counterfactual dependence that matters for successful explanation is
active counterfactual dependence.2 Put differently, a successful explanation
should appeal to factors or variables such that interventions on those factors
will be systematically associated with corresponding changes in its explanan-
dum. An explanation of the pressure of a gas in terms of its pressure and
volume meets this requirement—it supports or is associated with active
counterfactuals while a purported explanation of the occurrence of a storm
that appeals to the correlation betweenB andSdoes not.

On this understanding of what an explanation does, the connection between
explanation and invariance should be transparent. It is only if a generalization
is invariant under some range of interventions and changes that we can appeal
to it to answer what-if-things-had-been-different questions about what would
happen under these interventions and changes. For example, if the ideal gas
law systematically broke down under interventions that change temperature
and volume, then we could not appeal to it to answer questions about how the
pressure of a gas would change under such changes. Similarly it is because the
gravitational inverse square law is invariant under interventions that change
the distances between various objects and their masses that we can use this
generalization to show how the gravitational forces exerted by those objects
would change if their masses and the distances between them would change.

I can further clarify this account of explanation by means of an additional
comparison with the most familiar rival account—the DN model defended in
Hempel ([1965]). In the examples described above, we are shown, just as the
DN model demands, that an explanandum (e.g. (7)) is deducible from a law
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between non-backtracking and backtracking counterfactuals in David Lewis’s sense ([1973b]). A
counterfactual whose antecedent is made true by an intervention will behave in roughly the same
way as a counterfactual whose antecedent is made true by a ‘small’ Lewisian miracle. However,
this correspondence is only rough and not exact. Even if we put aside the fact that Lewis’s theory
focuses only on causal relationships between particular events, the intervention-based approach
that I advocate differs from Lewis’s in some of the specific judgments that it reaches about which
relationships are causal or explanatory—see Hitchcock and Woodward ([unpublished manu-
script]) for additional discussion. In addition, Lewis’ theory is reductionist in aspiration: he hopes
to explain the notion of causation in terms of a more general notion of counterfactual dependence
that does not itself presuppose causal notions. By contrast, I do not think that such a reduction is
possible. While the matter deserves more detailed discussion than I can give it here, my view is
that , given thatc causese, which counterfactual claims involvingc andeare true will depend on
which other causal claims involving other variables besidesc andeare true in the situation under
discussion. For example, it will depend on whether other causes ofebesidesc are present. In my
view, reference to these other causal claims cannot be eliminated in favor of purely noncausal
counterfactual talk. As explained above, (M) recognizes this.



(e.g. (4)) and a statement of initial conditions. However, we are also shown
something in addition to this—namely how (4) can be used to answer a set of
what-if-things-had-been-different questions about (7). This represents an inde-
pendent condition or constraint, that has no counterpart in the DN model and
does not follow just from the DN requirement that (7) be derivable from a law
and a statement of initial conditions. One way of bringing this out is to remind
ourselves of a familiar counter-example to the DN model, drawn from Salmon
([1971]). Consider the derivation:

(Ex. 11)
(L11) All men who take birth control pills regularly fail to get pregnant.
(C11) Mr. Jones is a man who takes birth control pills regularly.
(E11) Mr. Jones fails to get pregnant.

If we agree that (L11) is a law, (Ex. 11) meets the conditions for successful DN
explanation. None the less it is a defective explanation. The theory I have
proposed explains why in a natural way: the condition cited in the explanans of
(Ex. 11) is not such that changes in it produced by interventions would lead to
changes in the outcome being explained. A change in whether Jones takes birth
control pills will lead to no change in whether or not he gets pregnant. In
consequence, (Ex. 11) fails to satisfactorily answer a what-if-things-had-been-
different question about its explanandum: it fails to correctly identify the
conditions under which an outcome different from (E11) would occur and,
indeed, wrongly suggests that the condition cited (taking birth control pills) is a
condition such that changes in it would lead to changes in whether Jones gets
pregnant when in fact this is not true. This failure is reflected in our judgment
that taking birth control pills is explanatorily irrelevant to whether Jones gets
pregnant. Put differently, what (Ex. 11) shows is that a derivation can cite a
nomologically sufficient condition for an explanandum and yet fail to answer a
what-if-things-had-been-different question about it and hence fail to explain it.
Hence it shows how the account that I have provided differs from accounts that
take explanation to be just a matter of derivation from a law.

Consider, by way of contrast (Ex. 12):

(L12) All women who meet conditionK (K has to do with whether the
woman is fertile, has been having intercourse regularly and so forth) and
who take birth control pills regularly will not get pregnant and furthermore
all women who meet conditionK and do not take birth control pills regularly
will get pregnant.
(C12) Ms. Jones is a woman who meets conditionK and has been having
intercourse regularly.
(M12) Ms. Jones does not get pregnant.

Here, of course, we have considerably more inclination to say that at least a
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crude explanation of (M12) has been provided. On the account that I advocate
this difference between (Ex. 11) and (Ex. 12) is a reflection of the fact that the
latter, but not the former, satisfies the what-if-things-had-been-different con-
dition on explanation. The conditionK cited in (Ex. 12) is such that changes in
it would lead to changes in the outcome being explained—if Ms. Jones stops
taking birth control pills, is fertile and has intercourse, she will or at least may
get pregnant; if she fails to take the pills but also doesn’t have intercourse she
will not get pregnant and so on. (Ex. 12) thus draws our attention to a
systematic pattern of active counterfactual dependency of changes in its
explanandum (E12) on changes in its explanans. Unlike (Ex. 11), (Ex. 12)
does locate its explanandum within a range of possible alternatives and shows,
at least in a crude way, the range of conditions under which this explanandum
would hold and what sorts of changes in those conditions would instead lead to
one of these alternatives. In doing this (Ex. 12) shows us as how the conditions
cited in its explanans make a difference for, or are explanatorily relevant to its
explanandum. To put the point a bit differently, the contrast between (Ex. 11)
and (Ex. 12) shows that explanatory relevance—the key feature that is lacking
in (Ex.11) but present in (Ex. 12)—is just a matter of the holding of the right
sort of pattern of active counterfactual dependence between explanans and
explanandum: to a first approximation,S is explanatorily irrelevant toM if M
would hold both if S were to hold and ifS were not to hold when these
counterfactuals are interpreted actively.3

There is a second respect in which the account I am recommending differs
from the traditional DN account. The DN model requires that every explana-
tion must appeal to at least one law. Since laws (or more precisely laws that
connect changes and do not contain irrelevancies in the sense specified in
Section3), in virtue of their invariance characteristics and the support they
provide for active counterfactuals, provide information relevant to answering
what-if-things-had-been-different questions, my account agrees with the DN
model in holding that laws play a crucial role in (at least) some explanations.
That is, one way, illustrated by the examples described above, in which an
explanation can satisfy the requirement that it provide answers to a range of
what-if-things-had-been-different questions is by appealing to a law. However,
in taking invariance and support for active counterfactuals rather than law-
fulnessper seto be crucial to successful explanation we open up an intriguing
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3 This is by no means the only kind of case in which the DN model and the what-if-things-had-
been-different account of explanation diverge. For another sort of illustration consider laws that
do not relate changes in the sense described in Section2. These can be used to explain according
to the DN model, but not according to the what-if-things-had-been-different account. For
example, according to the DN model, one can explain why some particular massive particle
moves at a subluminal velocity by appealing to the law (2) which states that all massive particles
behave in this way. The model I favor denies this since the proposed explanation does not tell us
anything about the conditions under which massive particles will not behave in this way. Another
sort of case in which the model I favor and the DN model differ is described in fn. 4.



possibility that is not available within the DN or other purely nomothetic
frameworks: the possibility that there are generalizations that are invariant and
that can be used to answer a range of what-if-things-had-been-different ques-
tions and that hence are explanatory, even though we may not wish to regard
them as laws and even though they lack many of the features traditionally
assigned to laws by philosophers. In Sections12and13, I will argue that many
explanatory generalizations in the special sciences have exactly this charac-
ter—they are invariant generalizations that are not naturally regarded as laws.
To put the point a bit differently, the account provided above allows us to reject
the assumption, accepted by many if not most philosophical commentators,
that if the generalizations of the special sciences are genuinely explanatory,
they must either be or be closely associated in some way with laws of nature. It
thus allows us to avoid the various puzzles and difficulties that nomothetic
conceptions of explanation encounter when we attempt to apply them to the
special sciences.4

5 Degrees of invariance
My argument so far has been that generalizations like (2) and (3), in contrast to
(1) and (4) are not invariant under (any) interventions (that is, on the variables
that explicitly figure in those generalizations) at all—they are, as I shall say,
non-invariant and hence non-explanatory. However, as already intimated,
invariance is not an all or nothing matter. Most generalizations that are
invariant under some interventions and changes are not invariant under
others. As we shall see shortly, we may legitimately speak of some general-
izations as more invariant than others—more invariant in the sense that they
are invariant under a larger or more important set of changes and interventions
than other generalizations. Moreover, there is a connection between range of
invariance and explanatory depth—generalizations that are invariant under a
larger and more important set of changes often can be used to provide better
explanations and are valued in science for just this reason. The picture that I
will be defending is thus one in which there is both a threshold—some
generalizations fail to qualify as invariant or explanatory at all because they
are not invariant under any interventions on the variables that explicitly figure
in the generalization—and above this threshold a notion of invariance that
admits distinctions or gradations of various sorts. This picture corresponds to

James Woodward214

4 The examples of explanations considered so far and indeed all of the examples considered below
involve deductive arguments. However, it is not part of the account I am proposing that all
explanation must be deductive. The exhibition of a deductive structure is just one way in which an
explanation can answer what-if-things-had-been-different questions. So-called singular causal
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that I am proposing differs from the DN model.



how, intuitively, we seem to think about explanatory (or causal or nomological
relationships). Some relationships—e.g. the relationship described by (3)—
are not causal or explanatory at all, but among those that are, some may be used
to provide deeper or more perspicuous explanations than others. This repre-
sents just one of many points at which the invariance based account that I will
be defending contrasts with more traditional frameworks for thinking about
laws and their role in explanation. The traditional frameworks suggest a
dichotomy: that either a generalization is a law or else it is purely accidental.
Moreover, it is assumed that the boundary between laws and non-laws coin-
cides with the boundary between those generalizations that can be used to
explain and those that cannot. The invariance-based account rejects both of
these ideas.

The ideas introduced in the previous paragraph—that generalizations may
differ in the range of changes or interventions over which they are invariant
and that these differences are connected to differences in their explanatory
status—are familiar themes in the econometrics literature. They are illustrated
and endorsed by Tygre Haavelmo, one of the founding figures of econometrics,
in a well-known passage from his monograph ‘The Probability Approach in
Econometrics’ ([1944]). In this passage, Haavelmo introduces a notion which
he calls autonomy but is really just another name for what we have been calling
invariance. He writes:

If we should make a series of speed tests with an automobile, driving on a
flat, dry road, we might be able to establish a very accurate functional
relationship between the pressure on the gas throttle (or the distance of the
gas pedal from the bottom of the car) and the corresponding maximum
speed of the car. And the knowledge of this relationship might be suffi-
cient to operate the car at a prescribed speed. But if a man did not know
anything about automobiles, and he wanted to understand how they work,
we should not advise him to spend time and effort in measuring a relation-
ship like that. Why? Because (1) such a relation leaves the whole inner
mechanism of a car in complete mystery, and (2) such a relation might
break down at any time, as soon as there is some disorder or change in any
working part of the car. We say that such a relation has very little
autonomy, because its existence depends upon the simultaneous fulfill-
ment of a great many other relations, some of which are of a transitory
nature. On the other hand, the general laws of thermodynamics, the
dynamics of function, etc., etc., are highly autonomous relations with
respect to the automobile mechanism, because these relations describe the
functioning of some parts of the mechanismirrespectiveof what happens
in some other parts ([1944], pp. 27–8).

Haavelmo then suggests the following, more formal characterization of
autonomy:

Suppose that it would be possible to define aclass S, of structures, such
thatone member or anotherof this class would, approximately, describe
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economic reality inany practically conceivable situation. And suppose
that we define some non-negative measure of the ‘size’ (or the ‘impor-
tance’ or ‘credibility’) of any subclass,W in Sincluding itself, such that, if
a subclass contains completely another subclass, the measure of the
former is greater than, or at least equal to, that of the latter, and such
that the measure ofSis positive. Now consider a particular subclass (ofS),
containing all those—and only those—structures that satisfy a particular
relation ‘A’ is autonomous with respect to the subclass of structuresWA.
And we say ‘A’ has a degree of autonomy which is the greater the larger
the ‘size’ ofWA as compared with that ofS ([1944], pp. 28–9).

Although this characterization is far from completely transparent (among
other things, Haavelmo does not tell us how to go about determining the ‘size’
or ‘importance’ ofW—matters which we will address below), the underlying
idea is perhaps clear enough. In the most general sense the degree of autonomy
of a relationship has to do with whether it would remain stable or invariant
under various possible changes. (As we have argued, if, like Haavelmo, we
wish to use this idea to distinguish between those relationships to which we can
appeal to explain and those that cannot be so used, we need to include, among
the changes over which we demand that a relationship be autonomous, those
that correspond to interventions on the variables figuring in the relationship.)
The larger the class of changes under which the relation would remain
invariant—the more structures inW compatible with relation—the greater
its degree of autonomy. Haavelmo suggests that physical laws such as the laws
of thermodynamics and fundamental engineering principles such as those
governing the internal mechanism of the car will be highly autonomous in
this sense. By contrast, the relationship (call it (13)) between the pressure on
the gas pedal and the speed of the car will be far less autonomous. We may
imagine that (13) holds stably for some particular car if we intervene repeat-
edly to depress the pedal under sufficiently similar conditions. (13) will thus be
invariant under some interventions. Nonetheless, (13) will be disrupted by all
sort of changes—by variations in the incline along which the car travels, by
changes in the head wind which the car faces, by changes in the fuel mixture
that the car consumes, by changes in the internal structure of the car engine
(e.g. by cleaning the spark plugs and adjusting the carburetor) and so on. (13)
will also be disrupted by extreme interventions on the gas pedal—for example,
those that are sufficiently forceful that they destroy the pedal mechanism. (13)
is thus relatively fragile or non robust in the sense that it holds only in certain
very specific background conditions and for a restricted range of interventions.
Intuitively, although (13) is invariant under some interventions and changes, it
is invariant under a ‘smaller’ set of interventions and changes than funda-
mental physical laws.

According to the account of explanation defended in Section4 if (13) holds
invariantly for some range of interventions that depress the gas pedal by
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various amounts, for some type of car in a kind of environment, then we may
appeal to (13) and to the depression of the pedal to explain the speed of the car,
provided that the car is within the domain of invariance of (13). Within its
domain of invariance (13) describes a relationship that can be exploited for
purposes of manipulation and control—it describes how we can change the
speed of the car by changing the depression of the gas pedal. This is a feature
which (13) shares with paradigmatic laws like the gravitational inverse square
law and which distinguishes both from purely accidental generalizations like
(5) and (6). Because (13) is not completely lacking invariance, an explanation
that appeals to (13) will exhibit, albeit in a very limited way, the pattern of
active counterfactual dependence that I claimed in Section4was at the heart of
successful explanation. We can appeal to (13) to explain even if, because of its
relative fragility or for other reasons, we are unwilling to regard it as a law of
nature. We can thus think of this example as illustrating my claim that it is
invariance and not lawfulnessper sethat is crucial in explanation.

However, like Haavelmo I also take it to be obvious that an explanation of
the speed of the car that appeals just to (13) is shallow and unilluminating. I
follow Haavelmo in tracing this to the fact that the relation (13) is relatively
fragile—it is invariant only over a very limited range of interventions and
changes in background conditions and can be used to answer only a very
limited range of what-if-things-had-been-different questions. A deeper expla-
nation for the behavior of the car would need to appeal to laws and engineering
principles (14)—like those mentioned by Haavelmo—that are invariant under
a much wider range of changes and interventions. Not coincidentally such a
deeper explanation is such that it could be used to answer a much wider range
of what-if-things-has-been-different questions. For example, unlike (13) the
generalizations (14) appealed to in this deeper explanation are such that they
could be used to explain why the car moves with speed that it does over a
variety of different kinds of terrain and road conditions, under a variety of
different kinds of mechanical changes in the internal structure of the car and so
on. The what-if-things-had-been-different account of explanation thus seems
to capture the relevant features of Haavelmo’s example in a very natural way.

What might it mean to say, as Haavelmo does, that one generalization, is
invariant under a ‘larger’ set of changes or interventions than another? In
Haavelmo’s example, this question has a straightforward answer. To a very
good degree of approximation, the range of changes and interventions over
which (13) is invariant is a proper subset of the range of changes and inter-
ventions over which the generalizations (14) of the deeper engineering theory
of the behavior of the car are invariant. That is, any change that will disrupt the
latter will also disrupt (13) but notvice versa. Thus any properly behaved
measure will assign a larger size to the domain of invariance of the latter.

A similar basis for comparison exists in the case of many other pairs of
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generalizations. Compare the ideal gas law (4) with the van der Waals force
law

½P þ a=V2ÿ½V ¹ bÿ ¼ RT ð15Þ

Herea andb are constants characteristic of each gas, withb depending on the
diameter of the gas molecules anda on the long range attractive forces
operating between them. For any given gas, the generalization (15) holds
invariantly in circumstances in which the ideal gas law (4) holds, but it also
holds invariantly in at least some circumstances—roughly those in which
intermolecular attractive forces are important and in which the volume of
the constituent molecules of gas are large in comparison with the volume of the
gas—in which (4) breaks down. The range of changes or interventions over
which (15) is invariant is again ‘larger’ than the range of changes over which
(4) is invariant in the straightforward sense that the latter set of changes is a
proper subset of the former. Moreover, just as in Haavelmo’s example, this
larger range of invariance means that we can use (15) to answer a larger set of
what-if-things-had-been-different questions than (4). Thus we can use (15) to
answer question not just about what would happen to the values of one of the
variablesP, V andT given changes in the others in circumstances in which
intermolecular forces are unimportant and intermolecular distances large in
comparison with molecular volumes, but also what would happen toP, V or T
when these conditions no longer hold. We can also use the van der Waals
equation to explain various phenomena having to do with phase transitions—
again circumstances in which the simpler (4) breaks down. A similar relation-
ship holds between many other pairs of generalizations—for example,
between the laws of General Relativity and those of Newtonian gravitational
theory.

It is important to understand that the claim that the range of changes and
interventions over which a generalization (G1) is invariant is a proper subset of
the claim that a second generalization (G2) is invariant is not merely a
restatement of the claim that (G1) and (G2) are both true and that (G1) is
derivable from (G2) but notvice versa. For one thing (G1) may be derivable
from (G2) but notvice versaeven if neither generalization is invariant at all.
For example, the true generalization (G1) that the all spatiotemporal regions of
1 meter radius within 10 light years of the earth contain cosmic background
radiation at 2.7 degrees K is derivable from the generalization (G2) that all
spatiotemporal regions in the universe contain such background radiation but
neither generalization is invariant—neither is change—relating and both
apparently depend in an extremely sensitive way on the initial conditions
obtaining in the early universe. As another illustration, Mendel’s law of
segregation is derivable from and not equivalent to the conjunction of
Mendel’s law and Galileo’s law of freely falling bodies but the conjunctive
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law is not invariant under a wider range of interventions than Mendel’s law.
When we compare generalizations with respect to range of invariance, we
compare generalizations along a very specific dimension of generality. Such
comparisons are very different from the comparisons that we make when we
simply ask whether one generalization is derivable from another.

Although we may compare the range over which two generalizations are
invariant when the proper subset relation just described holds, this obviously
yields only a partial ordering. For many pairs of generalizations neither will
have a range of invariance that is a proper subset of the other. Moreover, the
proper subset relation provides at best a basis for ordinal comparisons. We can
say that one generalization is invariant under a larger set of changes than
another, but we have no basis for claiming that this set is large or ‘important’
(to use Haavelmo’s word) in some more absolute sense. Is there some other
basis on which we can make such claims? I believe that there is. This basic idea
is more easily illustrated than precisely characterized, but the underlying
intuition is this: for different sorts of generalizations, applicable to different
sets of phenomena or subject matters, there often will be specific sorts of
changes that are privileged or particularly important or significant from the
point of view of the assessment of invariance—privileged in the sense that it is
thought to be especially desirable to construct generalizations that are invariant
under such changes and that generalizations that are invariant under such
changes are regarded as having a fundamental explanatory status in compar-
ison with generalizations that are not so invariant. The privileged changes in
question will be subject matter or domain specific—one set of changes will be
important in fundamental physics, another in evolutionary biology and yet
another in microeconomics. Thus expectations about the sorts of changes over
which fundamental relationships will be invariant help to set the explanatory
agenda for different scientific disciplines. These expectations will in turn be
grounded in very general empirical discoveries about the sorts of relationships
in the domains of these disciplines have been found to be invariant in the past
and under what sorts of changes.

As an illustration consider that in physics fundamental laws are expected to
satisfy certain symmetry requirements. It is widely recognized that such
symmetry requirements , especially when interpreted ‘actively’, are invariance
requirements. They amount to the demand that fundamental laws remain
invariant under certain kinds of changes—for example under spatial or tem-
poral translation of a system of interest or under spatial rotations or under
translation from one inertial frame to another (Lorentz–invariance). These
demands are rooted in very general empirical facts about the natural world: that
relationships can be found that are invariant under these changes and not others
is an empirical discovery. These empirical discoveries in turn generate expec-
tations about the kinds of symmetries physical laws should exhibit. At least at
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present, generalizations that fail to satisfy such symmetry requirements are
unlikely to be regarded as candidates for fundamental laws or explanatory
principles, regardless of whatever other features they possess. The require-
ments thus have a special or privileged status—from the point of view of the
assessment of invariance in physics they are more important than invariance
under other sorts of changes. Unlike traditional accounts of laws, which leave it
opaque why fundamental laws are expected to satisfy symmetry requirements,
an invariance-based account makes these requirements intelligible.

For purposes of comparison, consider what counts an important kind of
change for the purposes of assessing invariance in contemporary microeco-
nomics. In microeconomics, individual economic agents are often assumed to
conform to the behavioral generalizations comprising rational choice theory
(RCT). For the purposes of this paper I will take these generalizations to
include the principles of expected utility theory, as described, for example, in
Luce and Raiffa ([1957]), together with the assumption that choices are self-
interested in the sense that agents act so as to maximize some quantity which is
directly related to their material interests, such as income or wealth. Even if we
assume, for the sake of argument, that these generalizations are roughly
accurate descriptions of the behavior of many participants in markets, it is
clear that there are many changes and interventions over which these general-
izations will fail to be invariant. For example, there are many pharmaceutical
interventions and surgically produced changes in brain structure that will lead
(and in some cases have led) previously selfish agents to act in non-self-
interested ways or to violate such principles of RCT as preference transitivity.
However, economists have not generally regarded these sorts of failures of
invariance as interesting or important, at least if, as is often the case, they occur
relatively rarely in the populations with what they deal.

By contrast, failures of invariance under other sorts of changes are regarded
as much more important. For example, microeconomists often require that
fundamental explanatory generalizations such as the principles of RCT be
invariant under changes in information available to economic agents or under
changes in their beliefs and under changes in the incentives or relative prices
they face. Indeed, a standard assumption among many microeconomists—one
might take it to be constitutive of a certain sort of methodological individu-
alism—is that the generalizations that will be invariant under such changes in
information and prices all describe the behavior of individual economic agents
rather than the relations between macroeconomic or aggregate-level variables
like ‘inflation’, ‘unemployment’, and ‘gross domestic product’. That is, the
idea is that there are no purely macroeconomic relationships that are invariant
under changes in information and incentives and hence that their are no
fundamental explanatory relationships between macroeconomic variables.

As an illustration, consider the macroeconomic relationship known as the
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Phillips curve. This describes the historically observed inverse relationship or
trade-off between unemployment and inflation in many Western countries
from the mid-nineteenth to mid-twentieth centuries. A crucial question is
whether this relationship is (or was) invariant under policy interventions on
these variables. According to some Keynesian models, the Philips curve does
describe a relationship which is invariant under at least some governmental
interventions that change the inflation rate. If so, governments would be able
by increasing the inflation rate to decrease the unemployment rate—a highly
desirable result. The burden of an influential criticism of these models devel-
oped by Lucas ([1983]) (the so-called Lucas critique) is that the relationship
discovered by Philips is not invariant under such interventions—that the result
of interventions that increase the inflation rate will not be to lower the
unemployment rate but rather simply to produce changes in the Philips
curve itself. Very roughly, according to this critique, increasing inflation
will reduce unemployment only if employers or employees mistake an abso-
lute increase in prices for a favorable shift in relative prices and (given the
assumption that these agents are ‘rational’) this is not a mistake they will make
systematically or for any length of time. As soon as these agents realize that a
general increase in the price level has occurred or come to expect that such an
increase will occur, unemployment will return to its original level. To put the
point abstractly, the Philips curve is not invariant under changes in the
information available to economic agents or under changes in their expecta-
tions of a sort that almost certainly will occur once the government begins to
intervene to change the inflation rate. A similar point will hold for many other
macroeconomic relationships.

This example illustrates how issues about invariance arise naturally in
economics. The interesting question for economists is not whether the Philips
curve is a law of nature or completely exceptionless but rather whether it is
invariant under certain specific kinds of changes and interventions. If the
Philips curve is not invariant under the relevant sorts of interventions, it will
not be regarded as a fundamental economic relationship or as a relationship
which it would be satisfactory to take as primitive in a deep economic
explanation. (For example, if the Lucas critique is correct, it would be
unsatisfactory to appeal to the inflation rate and the Philips curve to explain
the unemployment rate.) This is not because it fails to be invariant under all
possible changes and interventions (including all-out nuclear war or radical
psycho-surgery performed on the entire US population) but because it (alleg-
edly) fails to be invariant under a specific set of possible changes that are
thought to be particularly important—changes in the information that eco-
nomic agents receive.

My suggestion, then, is that both of the considerations described in this
section—comparisons of invariance based on the proper subset relation and
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judgments about the significance or importance of the intervention over which
a generalization is invariant—play an important role in the construction and
assessment of explanatory generalizations. Together they provide a basis for
distinguishing among invariant generalizations with respect to degree and kind
of invariance and for judging that although a generalization is invariant under
some interventions, it is nonetheless relatively fragile or unrobust in the sense
that it is stable only under an unimportant set of interventions or under a set of
changes that is relatively small in comparison with some rival generalization.
As remarked above, the idea that generalizations can differ from one another in
the range or importance of the interventions over which they are invariant is
one of a number of respects in which the invariance-based framework that I am
recommending departs from the traditional framework for thinking about laws
of nature and their role in explanation. In contrast to the traditional framework,
which admits just two mutually exclusive possibilities (a generalization is
either a law or else it is ‘accidental’), the notion of invariance allows us to make
a much richer set of distinctions among invariant generalizations. As we shall
see, this makes the invariance-based framework much better suited for captur-
ing the characteristics of explanatory generalizations in the special sciences.

6 Laws
In describing the difference between invariant and non-invariant generaliza-
tions and the differences among invariant generalizations, I have so far very
largely avoided invoking the notion of a law of nature and the various standard
criteria which philosophers have traditionally employed to distinguish
between laws and accidental generalizations. These criteria take a variety of
different forms: laws are said to be exceptionless generalizations representable
by universally quantified conditionals, to contain only purely qualitative
predicates and/or natural kind terms and to make no reference to particular
objects or spatio-temporal locations, to have very wide scope, to support
counterfactuals, to be projectable or confirmable by their instances, to be
integrated or potentially integrable into a body of systematic theory and to
play a unifying or systematizing role in inquiry. In order to have a useful
shorthand way of referring to these criteria, let us call them the traditional
criteria for nomological status.

What is the relationship between these criteria and the notion of invariance?
My view, to be defended below, is that most of the criteria are not helpful either
for understanding what is distinctive about laws of nature or for understanding
the features that characterize explanatory generalizations in the special
sciences. In general, it is the range of interventions and changes over which
a generalization is invariant and not the traditional criteria that are crucial both
to whether or not it is a law and to its explanatory status. Moreover, whether or
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not a generalization is invariant (and if so, over what range of changes and
interventions) is surprisingly independent of most of the traditional criteria—a
point that is perhaps suggested by the fact that in appealing to the notion of
invariance to describe the differences among various generalizations like (1),
(2), (3), (4), (13), and (14) we did not need to explicitly invoke these traditional
criteria at any point. In fact, a generalization may satisfy many of the tradi-
tional criteria and yet fail to be invariant and a generalization may be invariant
even through it fails to meet many of the traditional criteria. Among the
traditional criteria only one (support for counterfactuals) is relevant to whether
a generalization counts as invariant, and even then, as we shall see below
(Section10), this criterion is understood quite differently on the invariance-
based approach than on the traditional approach.

One possible response to these facts is to drop the concept of a law of nature
as unhelpful for understanding science and to focus directly on the notion of
invariance since the latter notion captures, or so I have suggested, what is really
relevant to successful explanation. This strategy should appeal to those philo-
sophers (Cartwright [1983]; Giere [1988]; van Fraassen [1989]) who, on
various grounds, have been skeptical of the whole idea that there are laws of
nature or that the concept of natural law plays an important role in science.
While I am by no means entirely unsympathetic to this suggestion, I will not
adopt it in this paper. Instead, I will proceed on the assumption that the concept
of a law of nature, although not an especially sharp or clear concept (see
Section11), remains useful for understanding explanatory practice in some
areas of science (principally physics and chemistry) although it is not very
helpful in connection with in the special sciences. Continuing the precedent
established in previous sections, I will follow standard scientific practice in
describing paradigmatic generalizations from physics and chemistry like the
gravitational inverse square law, Maxwell’s equations, and the ideal gas law as
genuine laws. However, I will argue that there is little motivation for extending
the notion of law to cover all of the explanatory generalizations of the special
sciences. Rather than thinking of all invariant generalizations as laws, I suggest
instead that we think of laws as just one kind of invariant generalization. Laws
do indeed play an important role in (some areas) of science, but they are both
less central and less pervasive in science as a whole than traditional approaches
suppose.

7 Invariance, qualitative predicates, and scope
I claimed above that whether a generalization is invariant is surprisingly
independent of whether it satisfies most of traditional criteria for lawfulness.
Showing this in detail would require a lengthy paper in its own right. In
what follows I will illustrate this claim by focusing on just a few of these
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criteria—the requirements that laws must not refer to particular places or times
and must not be too narrow in scope (this section), the requirement that laws
and explanatory generalizations must be exceptionless (Section9), and the
idea that laws must support counterfactuals, which I discuss and reinterpret in
Section10.

Consider first the common suggestion that laws must contain ‘purely
qualitative’ predicates and must contain no essential reference to particular
objects, times or places. As a number of writers have observed, this is a dubious
criterion for lawfulness. It is thus of considerable interest that it is perfectly
possible for a generalization to be invariant without satisfying this criterion. To
see this, imagine that Clinton’s pockets on January 8, 1999 do turn out to have
the property that whenever a non-dime is introduced into them, it is turned into
a dime. In such a case, the generalization (5) (‘All the coins in Clinton’s
pockets on January 8 are dimes’) would be invariant under such interventions
despite the fact that it contains non-qualitative predicates and makes essential
influence to a particular person and time. Indeed, we can imagine, consistently
with the non-qualitative character of (5), that it is invariant under a very wide
range of interventions and changes—that it continues to hold no matter how
coins are introduced (and no matter which coins are introduced) into Clinton’s
pockets, and no matter which other background changes occur.

This particular example is of course fantastic but there are others that are less
so. Aristotle is often represented as thinking that as a matter of law (16) all
freely falling objects will move toward particular spatial location—the center
of the earth. He was, of course, wrong about this, but what was the nature of his
mistake? If it is built into the very concept of law of nature that laws must not
refer to particular places, his mistake was a conceptual one. A much more
plausible judgment is that his mistake was empirical. The connection between
lawfulness and invariance for which I have been arguing supports this judg-
ment, for it is clear that (16) might have turned out to be a highly invariant
generalization despite its reference to a particular object or spatial location.

For similar reasons, it is perfectly possible for a generalization to be
invariant only for changes and interventions that occur within a limited spatial
or temporal interval and to break down outside that interval. Suppose that,
contrary to actual fact, the Phillips curve turned out to be invariant under
governmental interventions that changed the inflation rate between, say, 1870
and 1970 in the UnitedStates, although not invariant outside this interval. If
this had been the case, then (I would claim) despite the limited spatio-temporal
scope of this relationship, one could appeal to it and to the fact that the US
government intervened to raised the inflation rate in 1915 to explain why
unemployment fell after this intervention. More generally, in contrast to
traditional law-based accounts of explanation, the notion of invariance
allows us to talk about explanatory relations that hold only over limited
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spatio-temporal intervals or which make reference to particular objects, events
or processes. As we shall see below, many explanatory generalizations in the
special sciences seem to have exactly these features and this is one reason why
the notion of invariance is particularly well suited to understanding their
character.

Consider next the relationship between invariance and scope. This latter
notion is difficult to characterize precisely, but I will take the intuitive idea to
be that a generalization has wide scope if it holds for a ‘large’ range of different
kinds of systems, in the sense that the systems in question satisfy both its
antecedent and its consequent and that we can appeal to the generalization to
explain the behavior of such systems. For example, we think of the Newtonian
inverse square law as having wide scope because it holds for all masses
throughout the universe—for bodies falling near the surface of the earth, for
all planets orbiting the sun and so on. By contrast, we think of a version of
Hooke’s law (17)F=–Ksx that describes the behavior of one particular sort of
spring, characterized by the specific spring constantKs, as much narrower in
scope. Most other sorts of springs will obey a different (or no) version of
Hooke’s law, and most systems that are not springs will not be describable in
terms of this law at all.

While I think that it is true (see Section11) that we are reluctant to regard
generalizations with narrow scope as laws, it is nonetheless of considerable
interest that the scope of a generalization seems to have little to do with
whether it is invariant and, if so, over what range of changes and hence on
my view, little to do with explanatory import.5 Despite its narrowness of scope,
the generalization (17) might well turn out to be invariant under a substantial
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5 The notion of scope and its relation to invariance deserve a more detailed treatment than I can give
them here. Intuitively, the scope of (17) has to do with how many different kinds of springs (or
perhaps, alternatively, with how many individual springs) are correctly described by (17). For
example, the scope of (17) would be greater if it correctly described not just springs made out of the
material that is characteristic of S but also other sorts of springs, found elsewhere in the universe
and made of very different kinds of material. The scope of (17) would be narrow if there were only
one spring in the universe conforming to (17) and greater if such springs were very common. By
contrast, when we ask about the range of invariance of (17)quadescription of the behavior of S we
are asking a different kind of question. In this case, we want to know, for springs of this very type
(regardless of how many or how many different kinds there are), the range of interventions over
which (17) is invariant. Conversely, even if there was only one spring in the universe conforming to
(17), (17) could still be a highly invariant generalization concerning the behavior of that spring.

In general, scope differs from invariance in at least two ways. First, invariance is amodal
notion—it has to do with whether a relationship would remain stable under various hypothetical
changes. In contrast, scope is understood in actualist, non-modal terms—it has to do with how
many systems or how many different kinds of systems there actually are to which a generalization
applies. Second, invariance requires stability under interventions—where there is no well-
defined notion of intervention or change there is no notion of invariance to apply. Suppose a
generalization like (17) describes the behavior of springs made of two different kinds of materials
M1(plastic) and M2 (copper). There may be no well-defined notion of changing a spring made of
M1 into one made of M2 or at least no way of carrying out the change so that (17) is stable over
intermediate steps in the change. (As Hitchcock and Woodward [unpublished manuscript] put it,
(17) isn’t stable in a neighborhood around M1.) Hence one can’t legitimately talk about (17)



range of interventions that change the extension of a particular spring or set of
springs and under other changes in background circumstances as well. If so,
according to the account of explanation advocated here, we can appeal to this
generalization to explain why a particular spring exerts the force that it does.
Again this is important for understanding explanation in the special sciences.
Many generalizations in the special sciences, such as the regression equations
described in Section12or generalizations about particular biological mechan-
isms lack broad scope—intuitively, they are about very specialized kinds of
systems—but it would be a mistake to conclude on this ground alone that they
are unexplanatory.

8 Invariance and exceptionlessness
I turn next to a more extended discussion of one of the most important of the
traditional criteria for lawfulness. This is the requirement that laws must be
exceptionless.6 Most philosophers still endorse this idea; a particularly
straightforward expression can be found in a recent paper by Paul Pietroski
and Georges Rey:

The key feature [of laws] [ . . . ] is the universal quantifier. Laws say that
wheneversome initial condition obtains, some other condition obtains as
well. A single instance of [F.-G] shows the generalization ‘F→G’ to be
false, in which casea fortiori there is no such law ([1995], p. 83).

If taken literally, the requirement that genuine laws must be exceptionless
virtually forces the law/accident dichotomy on us since exceptionlessness is an
all or nothing matter, and not one of degree. This is also the requirement that
creates some of the deepest difficulties for the contention that explanatory
generalizations in the special sciences are laws since, on the face of things,
most such generalizations seem far from exceptionless. The centrality of this
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being invariant under changes from M1 to M2. If (17) applies to both M1 and M2, it has broader
scope than if it applies just to springs made of M1, but it isn’t any more invariant.

One of the many reasons why this distinction is important is its bearing on unificationist views
of explanation like those defended by Friedman ([1974]) and Kitcher ([1989]). In my view it is
counterintuitive that the goodness of the explanation of the behavior of some particular spring
should depend on the scope of (17). One does not understand the behavior of the spring better if it
should turn out that there are many other systems or kinds of systems to which (17) applies rather
than just one. However, for all of the reasons adduced above, it is not at all counterintuitive that
the goodness of this explanation has something to do with the range of changes and interventions
over which (17) is invariant. From my perspective, the unificationist account of explanation, at
least as formulated by Friedman and Kitcher, fails to distinguish between scope and range of
invariance; it mistakenly takes the degree of unification a generalization achieves and hence its
explanatory import to depend on its scope.

6 Systems that represent exceptions to a generalization most of course be distinguished from
systems to which the generalization merely fails to apply. I will follow Pietroski and Rey in
thinking of exceptions as involving cases in which the behavior of a system satisfies the
antecedent of a generalization but not its consequent. By contrast, a generalization will fail to
apply to a system if it fails to satisfy the conditions specified in its antecedent.



requirement in contemporary discussions of laws and explanation in the
special sciences is indicated by the existence of a very substantial literature
on ceteris paribus laws, to be examined in more detail in Section13, that is
premised on the assumption that to vindicate the lawfulness and explanatory
status of generalizations in the special sciences one must show that these
generalizations are (or can be closely associated with ‘backing’ generalizations
that are) exceptionless. Needless to say, there would be no motivation at all for
this project if (as I shall argue) it is a mistake to suppose that to qualify as a law
or as invariant or explanatory a generalization must be exceptionless.

By way of contrast with the traditional view that exceptionlessness is
essential for lawfulness, I said, in describing the ideal gas law (4), that it
was invariant under a certain range of changes in the variablesP, V, andT but
broke down or failed to hold exceptionlessly under others (for example, under
conditions like extremely high pressures at which intermolecular forces
become important). I thus took it that (4) could count as a genuine law and
figure in explanations of the behavior of gases within the domain over which it
is invariant even though it had exceptions outside of this domain. Philosophers,
who like Pietroski and Rey, require that genuine laws are exceptionless must
hold that (4), as it stands, is no law. The usual move is to suggest that, insofar as
there is a law associated with (4), this will be a generalization that incorporates
some appropriate set of qualifications and conditions into its antecedent in such
a way as to render it exceptionless. Thus it will be suggested that the law
associated with (4), is not really expressed by (4) itself, but rather by some
more complicated, exceptionless generalization like (18) ‘In circumstances
C1 . . . Cn (where C1 . . . Cn are taken to exclude the possibility that
intermolecular forces are important etc.), (4) holds’.

In fact, however, most known examples of physical laws follow a pattern
like the one I have attributed to the ideal gas law. They are invariant only under
a certain domain or regime of changes and break down outside of these. For
example, the laws of classical electromagnetism (Maxwell’s equations) break
down at scales at which quantum mechanical effects become important.
Similarly, the field equation of general relativity are widely expected to
break down at very small distances (the so-called Planck length) at which
quantum gravitational effects become important.

In my view, we should resist the conclusion that these facts show that
Maxwell’s equations and the field equations of general relativity are not, in
their usual formulations, genuine laws and that the genuine laws associated
with these generalizations are instead exceptionless generalizations con-
structed on the model of (18) (i.e. generalizations like (19) ‘If such and such
conditions are satisfied, then Maxwell’s equations will hold’). To begin with,
such a view is sharply at odds with standard scientific practice which is to take
Maxwell’s equations and the field equations as laws just as they stand and to
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appeal to these generalizations, rather than exceptionless reconstructions of
them like (18)–(19), in order to explain. Moreover, scientists often make use of
laws in their usual form (that is, with exceptions) in circumstances in which
they are unable to describe in a precise or theoretically perspicuous way, the
exact boundaries of the domains over which they are invariant—that is, in
circumstances in which they do not know how to turn them into an exception-
less generalizations along the lines of (18)–(19). For example, scientists
regarded Maxwell’s equations as laws of nature and appealed to them to
explain long before they were able to correctly specify the circumstances in
which these equations break down. It is a reasonable guess that many general-
izations presently regarded as laws similarly will be found to break down in
circumstances that are not at present understood. Indeed, some theorists claim
that this will be true for all laws of nature—a suggestion that is incoherent on
the traditional account of laws, although not on the invariance-based account.
Even if we put this possibility aside, it seems clear that if we demand that all
genuine laws must be exceptionless generalizations, it follows that we know
very few laws and, given the additional assumption that explanations must cite
laws, that most of the generalizations we know how to formulate, even in
physics, cannot be used to explain. Finally, and most importantly, we shall see
in the following section that there are principled reasons, grounded in the kinds
of information that we expect successful explanations to provide, why general-
izations like the ideal gas laws or Maxwell’s equations are formulated in their
usual, exceptioned form, rather than in the exceptionless form (18)–(19).

I believe that it is an important advantage of the notion of invariance that it
provides a way of capturing this feature of laws—that it doesn’t require that
laws be exceptionless. As (4) illustrates, it makes perfectly good sense to think
of a generalization as invariant across a certain range of changes and interven-
tions even if it is not exceptionless or invariant across all such changes. The idea
that Maxwell’s equations are invariant across certain kinds of changes or
conditions but not others and that this sort of invariance is sufficient for those
equations to count as laws and to figure in explanations represents in a natural
way the role that these generalizations actually play in scientific practice.

9 Exception incorporation vs. independent specification
I suggested above that there are principled reasons, in addition to the con-
siderations rehearsed in the previous section, why it is appropriate to think of
generalizations like Maxwell’s equations or the field equations of general
relativity as laws just as they stand and misguided to demand that all laws or
explanatory generalizations must be exceptionless. It will be useful to explore
these in more detail since they will play an important role in our subsequent
discussion.
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Let me begin by raising what might seem to be an obvious objection to the
position I have been defending. Consider the formulation that I favor, in which
we claim that (20) some generalization (G) is invariant within a certain domain
D but breaks down or has exceptions outside this domain. I will call this the
independent specification model since the domain D in which (G) holds is
specified independently of (G), rather than being packed into the antecedent of
(G). The objection to this goes as follows: given the information embodied in
(20), can’t we always reformulate this model along the lines suggested in the
previous section, as an exceptionless generalization of the traditional kind, the
antecedent of which is restricted to D? That is, why not think of (20) as
equivalent to an exceptionless generalization which says (roughly) (21) ‘For
all X, wheneverX is in domain D (or satisfies whatever conditions are sufficient
for being in domain D), then [ . . . ] (here follows the original generalization
G)’. I will call this the exception-incorporating model, since the restrictions on
D are incorporated directly into the generalization (21) rather than being
specified independently.

Even if it is true that generalizations in science are typically formulated
along the lines of the independent specification model (20), rather then along
the lines of the exception-incorporating (21), it is tempting to think of (20) and
(21) as two different ways of representing the same claim—as mere notational
variants on one another. Isn’t it arbitrary whether we specify the domain
independently of (G), as (20) does, or build it into the antecedent of a general-
ization as (21) does? If anything, isn’t (21) simpler and more perspicuous than
(20) and more in accord with traditional ideas about the features laws must
possess?

In what follows I will argue that the formulations (20) and (21) are not
equivalent or interchangeable: the two formulations are motivated by quite
different views about the sort of information that is required to improve an
explanation and about what one needs to know in order to successfully explain.
They are also associated with two quite different ways of thinking about the
content of scientific theories. There are in fact good reasons for preferring (20)
to (21).

Let me begin with an observation designed to undermine the suggestion that
the exception-incorporating formulation (21) is automatically more natural or
perspicuous. Once one gives up the idea that successful explanation is just a
matter of nomic subsumption (or of showing that an explanandum was to be
expected), it will not be always or automatically true that we improve the
explanatory credentials of a generalization with exceptions by replacing it with
a generalization that is exceptionless or more nearly exceptionless. In parti-
cular, according to the account of explanation defended in Section4, changes
to a generalization that render it exceptionless (or more nearly exceptionless)
but do not enable it to figure in the answers to a larger range of what-if-things-
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had-been-different questions will not constitute an explanatory improvement.
It is in part because of this that exceptionlessness is a less crucial feature of
laws and explanatory generalizations than many philosophers have supposed.

As an illustration, suppose that, as we have imagined, General Relativity
does break down below the Planck length but only in those circumstances, so
that the generalization (22) ‘Above the Planck length (here follow the field
equations)’ is genuinely exceptionless. Consider some phenomenon such as
the deflection of starlight by the sun which we ordinarily take to be explained
by General Relativity in its usual, exceptioned form—i.e. just by the field
equations themselves. Would this explanation be improved if we were to
replace the field equations with the exceptionless generalization (18)? Not
(or at least not obviously) according to the account of explanation sketched in
Section4. The reason is that an explanation of starlight deflection in terms of
(22) does not convey new information in addition to what is conveyed by the
field equations themselves about what would happen if the conditions cited in
its explanans were to change or at least it does not convey the kind of precise or
specific information about this that we desire in a successful explanation. The
explanation in terms of (22) tells us nothing definite about what would happen
if the additional condition added to (22)—being above the Planck length—
were to change. That is, we are told nothing specific about what would happen
under conditions below the Planck Length, other than (by implication) that the
field equations will no longer hold.

The idea that (22) does not represent a serious explanatory advance on the
field equations as ordinarily formulated may seem very odd to those whose
judgments about such issues have been nurtured by nomic subsumption models
of explanation and by the closely associated idea that laws must be exception-
less. None the less, I submit that this judgment is just scientific common sense.
A genuine explanatory advance over General Relativity would require the
actual construction of a unified theory of gravity which embraces both quan-
tum and macroscopic gravitational phenomena. Presumably such a theory
would show in terms of some single set of principles, both how gravitational
phenomena behave at very small length scales and how General Relativity
turns out to be correct or nearly correct at large distances. Such a theory could
thus be used to answer a larger set of (interesting) what-if-things-had-been-
different questions than General Relativity and for this reason would represent
an explanatory advance. However, merely to specify, as (22) does, that GR
breaks down below the Planck Length is not to provide or exhibit such a unified
theory (although it no doubt suggests something about the form such a theory
will take). It is in part because the substitution of (22) for the field equations
represents no serious explanatory advance that scientists are usually quite
happy to employ the usual formulation of GR rather than (22) to explain
phenomena that fall within the domain of GR.
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To put the point in a way that anticipates my discussion below, the condition
‘being above the Planck Length’ plays a different role than the causal or
explanatory factors that figure in the field equations such as the stress-
energy tensor or the curvature tensor. In contrast to the mass-energy distribu-
tion in some region of spacetime which genuinely helps to explain why this
region has a certain curvature, ‘being above the Planck Length’ doesn’t
describe a factor that explains anything or makes anything happen. Its role is
rather to describe a condition for the application of GR or to help specify the
domain over which GR holds. Scientists recognize this different role by not
thinking of this condition as built into the field equations themselves but rather
as specified independently, along the lines of (20) above.

There are other considerations, also rooted in scientific practice, that support
this analysis. The idea that laws and other explanatory generalizations must be
exceptionless goes along with (is supported by) a certain picture of how
theorizing and model building work in science: a picture according to which
explanatory generalizations already contain (at least if properly formulated)
within themselves full specifications of their exact domains of application.
However natural this picture may seem to philosophers, there is little doubt that
it is a descriptively inaccurate account of scientific practice. A more descrip-
tively realistic picture is this: at any given time, scientists will have in their
possession various generalizations which they have successfully used to model
and explain certain phenomena. However, it is typically a separate empirical
question, the answer to which is not already built in to these generalizations,
what the full range of phenomena is that can be so explained. Sometimes, as in
the case of GR, scientists can give a simple, precise, and general characteriza-
tion of the domain in which a generalization holds. Then one can read off just
from this characterization whether the generalization can be appropriately
applied to some potential explanandum. But more commonly, especially in
the special sciences, such a general characterization will be unknown and may
not even exist at the level at which one is theorizing. Instead, the circumstances
in which generalization breaks down will be very complex and heterogeneous
and in many cases not known with any precision. In this sort of case, whether
the generalization holds for various previously unexplained phenomena must
be discovered empirically, on a case by case basis, by seeing whether the
generalization can be successfully applied to them, perhaps with the guidance
of some very rough rules of thumb.

As an illustration of this point, consider Mendel’s law of segregation which
is standardly formulated as the claim that in sexually reproducing organisms
each gene from a pair has 0.5 probability of being represented in a gamete.
When so formulated this generalization breaks down in a number of different
circumstances—for example, when meiotic drive is present. However, the law
of segregation does not by itself tell us what these circumstances are—instead
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whether substantial violations are present in particular populations often must
be determined ‘empirically’ on a case by case basis. L. C. Dunn, the discoverer
that the t-allele in house mice (which is responsible for taillessness) does not
conform to Mendelian segregation, describes this feature of biological practice
when he writes:

Mendelian heredity and its corollary, Hardy–Weinberg equilibrium in
panmitic populations, assume [that the probabilities of the A and a
gametes produced by the heterozygote Aa are equal] as a matter of
course and the assumption is generally justified by direct evidence and
by success in application. But the rule is not universal [. . . ] (Dunn [1957],
pp. 139–40, quoted in Beatty [1979], pp. 131–2).

In contrast to the exception-incorporating model, Dunn does not think that the
law of segregation is exceptionless or that one can determine whether some
particular trait conforms to the law merely by examining whether the con-
ditions specified in the antecedent of the law are satisfied. Instead such a
determination is made on the basis of additional evidence or ‘success in
application’.

As a second illustration consider the principles of rational choice theory. In
addition to the violations of these principles discussed in Section5 there is
general agreement that exceptions are more extensive in connection with
certain kinds of political and economic phenomena than others. For example,
in the course of a recent defense of rational choice models, Fiorina ([1995],
p. 88) claims that:

RC [Rational Choice] models are most useful where stakes are high and
numbers low, in recognition that it is not rational to go to the trouble to
maximize if the consequences are trivial and/or your actions make no
difference.

In a similar vein, Green and Shapiro ([1995], p. 267) write, in the course of a
critical survey of RCT:

Rational choice explanations should be expected, prima facie, to perform
well to the extent that the following five conditions are met: (i) the stakes
are high and the players are self-conscious optimizers; (ii) preferences are
well ordered and relatively fixed (which in turn may require actors to be
individuals or homogeneous corporate agents); (iii) actors are presented
with a clear range of options and little opportunity for strategic innovation,
(iv) the strategic complexity of the situation is not overwhelmingly great
for the actors, nor are there significant differences in their strategic
capacities, and (v) the actors have the capacity to learn from feedback
in the environment and adapt. Our conjecture is at bottom empirical,
rooted in our best judgment concerning why rational choice models
have failed in the literatures we have examined. We might be wrong
about one or more of these constraints; only the progress of empirical
inquiry will tell.
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For example, rational choice models typically provide better explanations
and more accurate predictions of the behavior of politicalélites and party
leaders (who are often in a position to expect a strong influence on outcomes
about which they are informed and care a great deal) than of the decisions of
individual voters, who are often not well-informed and whose chances of
casting a decisive ballot are typically extremely small. For similar reasons,
as Satz and Ferejohn observe in a recent paper ([1994]), rational choice models
have been far more successful in explaining the behavior of firms than the
behavior of individual consumers.

In the passages quoted above, the likely domain of RCT and the circum-
stances in which it is likely to break down, are specified in an informal and
rather imprecise way, and independently of the basic explanatory principles of
RCT rather than being incorporated into those principles. That is, they follow
the pattern of the independent specification model (20) above, rather than the
exception-incorporating model (21). One reason why it is implausible to
suppose that, appearances to the contrary, these restrictions should be regarded
as built into the principles of RCT is that the restrictions are inconsistent with
the principles if the latter are interpreted as universal laws. For example, RC
principles themselves tell us that we should not expect that people’s behavior
will be any less self-interested when stakes are low than when they are high. It
is precisely because this is the case that explaining why most people bother to
vote creates such difficulties for RC approaches. In addition, the restrictions
described above are obviously vague and imprecise—they are best viewed as
rules of thumb rather then as specifications of the exact circumstances in which
we should expect RC principles to hold. This imprecision makes the restric-
tions unattractive candidates for incorporation into the antecedents of RC
principles themselves—a point to which I will return below. Finally, as the
above quotations make clear, the restrictions represent empirical discoveries
that result from a long series of unsuccessful attempts to apply rational choice
approaches to the phenomena described above—attempts that clearly reveal
the extent to which those who use the theory do not regard a specification of the
phenomena for which the theory holds as built into the fundamental principles
of the theory.

While model (20) in which domain and generalization are specified inde-
pendently often seems to provide a more accurate description of scientific
practice, one might still wonder whether the exception-incorporating model
(21) is more normatively perspicuous. In what follows, I will argue that the
reason that scientific practice conforms to model (20) is that this model also has
certain normative advantages: it allows us to formulate a much more plausible
account of what one needs to know in order successfully to explain. Implicit in
the account of explanation defended above are the following epistemic require-
ments: if one wishes to explain the behavior of system S, one needs to know
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(23) an invariant generalization (G) and (24) information about initial condi-
tions holding in S that when combined with (G) can be used to answer a
range of what-if-things-had-been-different questions about the behavior of
S. Knowing this requires knowing (25) that with respect to the behavior in
question S is in the domain of invariance of (G). However, in order to use (G) to
explain one need not know (26) the exact boundaries of the domain D over
which (G) holds—i.e. one doesn’t have to know an exceptionless version of
(G).

This conception fits naturally with the independent specification model (20)
and with the remarks from Fiorina and Green and Shapiro quoted above. The
idea is that one can appeal to the principles of RCT to explain the behavior of,
say, buyers and sellers in a certain market, as long as one knows that the
behavior of these agents is within the domain of invariance of these principles
(that is, as long as these principles correctly describe how those participants
would behave under some relevant range of changes in variables like prices)
even though one is unable to state these principles in a completely exception-
less form and they almost certainly break down in unknown ways for some
other actors in other circumstances. That is, the fact that such principles are
violated by, say, ordinary voting behavior doesn’t undercut their use to explain
behavior in domains in which they are invariant. Similarly, a Nineteenth
Century physicist can use Maxwell’s equations to explain various classical
electromagnetic phenomena while having false beliefs about (or no beliefs at
all about) the conditions under which Maxwell’s equations fail to hold—while
being unable to formulate Maxwell’s equations in a genuinely exceptionless
way—as long as it is known to be true that these classical phenomena fall
within the domain of invariance of Maxwell’s theory. The independent speci-
fication model permits us to distinguish between, on one hand, knowing (23)–
(25) and, on the other hand, knowing (26) because we don’t think of the
information (26) as already built into (G) and because we can know that (25)
some system of interest is within the domain of (G) without knowing the exact
boundaries of that domain. It thus allows us to express the idea that it is
invariance rather than exceptionlessness that is crucial to successful explana-
tion. By contrast, on the exception-incorporating model, no such distinction is
available. Information about the boundaries of D must be built into (G) itself
and if, as is typically the case, one doesn’t have such information, one will
typically be unable to formulate (G) itself in an acceptable way.

While the exception-incorporating model (21) connects successful explana-
tion with the possession of exceptionless generalizations, the independent
specification model (20) fits more naturally with the undeniable fact that,
especially in the special sciences, in constructing explanations we often
must appeal to generalizations the exact boundaries of whose domains are
unknown or very difficult to characterize in a precise way. My suggestion is
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that it is part of our methodology for constructing and evaluating explanations
that this sort of imprecision is allowable in the specification of the domain over
which an explanatory generalization holds but not acceptable when specifying
the generalization itself. The informal qualitative descriptions of the domain
over which rational choice theory may be expected to hold quoted above
illustrate this basic idea—the imprecision of such descriptions is acceptable
when characterizing the domain of the theory, but would be unacceptable if
built into the fundamental generalizations of RCT. When our knowledge of the
limits of validity of a generalization are vague, or when we know or suspect it
doesn’t hold exceptionlessly but are unable fully to enumerate the exceptions,
we build the vagueness into our characterization of its domain rather than
building it into the antecedent of the generalization itself. Nor is this arbitrary:
as suggested above we can operate perfectly well with domains that have vague
boundaries since we can often know that we are within those boundaries even if
we don’t know exactly what they are. By contrast when vague and unclear
domain restrictions are built into the antecedent of a generalization we are left
with a candidate for a law without any definite content at all.

10 Invariance and counterfactuals
The notion of invariance is obviously a modal or counterfactual notion—it has
to do with whether a relationship would remain stable if, perhaps contrary to
actual fact, certain changes or interventions were to occur. What is the
relationship between the idea that laws (and other explanatory generalizations)
describe invariant relationships and the more familiar idea, defended by many
writers, that what distinguishes laws from accidental generalization is that the
former but not the latter ‘support’ counterfactuals? Does the invocation of
invariance merely restate this more familiar idea in slightly different language?
I claim that the answer to this question is ‘no’. The relationship between laws
(and other explanatory generalizations) and counterfactuals suggested by the
notion of invariance is interestingly different from the standard philosophical
picture of their relationship.

Consider a generalization of form

(27) All AsareBs

and the associated counterfactual

(28) If X were to be anA, then it would be aB.

The standard philosophical view is that if (27) is a law, it will support
counterfactuals of form (28); by contrast if (27) is accidental, it will fail to
support such counterfactuals. Exactly what ‘support’ means and exactly which
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counterfactuals of form (28) must be supported is typically left unclear; in
practice the requirement is often interpreted in such a way that (27) counts as a
law if we can find some true counterfactual (or perhaps some small set of true
counterfactuals) to associate with it.7

There is an obvious problem with this proposal. There seem to be many
generalizations that in some sense support8 counterfactuals of form (28), but
that are plainly not laws, or even invariant generalizations. Consider a variant
of an example due to Aardon Lyon ([1977]). A museum has adopted a policy
such that

(29) All of the Sisleys in its possession are hung in room 18.

You are ignorant of this policy and ask, regarding some painting in room 17,
whether it is a Sisley. You are told in response:

(30) If this painting were a Sisley, then it would be in room 18.

There is a natural reading of the counterfactual (30) according to which it is
true and according to which it is supported by the generalization (29). Simi-
larly, suppose for the sake of argument that

(31) All drivers in England drive on the left hand side of the road.

There is a natural reading of the counterfactual

(32) If I were to drive in England, then I would drive on the left hand side of the
road

according to which (32) is true and according to which it is supported by (31).
Indeed, it is easy to imagine circumstances in when even the generalization

(5) All the coins in Clinton’s pocket are dimes.

‘supports’ (or appears to support) some counterfactuals of form (28). Suppose
(5) is found to be true over an extended period of time and in circumstances in
which many coins move in and out of Clinton’s pocket. Then it is a very
reasonable inference that there is some systematic reason or cause why (5) is
true. Perhaps, for example, Clinton has made it his policy to allow only dimes
in his pocket. Given that this is the case, if you are told that some particular
coin c is in Clinton’s pocket, you have good reason to suppose that it is a dime.
You thus have good reason to accept the counterfactual

(33) If c were a coin in Clinton’s pocket, then it would be a dime.
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provided this is understood in a what we earlier called a passive sense (that is,
as a claim about what it would be reasonable to believe about c, given the
information that it is in Clinton’s pocket) rather than in an active sense (as a
claim about what would happen to a non-dime if it were introduced into
Clinton’s pocket as a result of intervention).

Nonetheless, (29), (31), and (5) are plainly not laws of nature. Indeed, both
(29) and (5), at least, strike us as paradigmatic examples of accidental, non-
explanatory generalizations. A focus on invariance explains the basis for these
judgments. Even if (5), (29), and (31) are true, our background knowledge
leads us to believe that all three generalizations are highly non-invariant in the
sense that they would breakdown under many different sorts of interventions
and changes in background conditions. For example, (29) would break down
under interventions that consist in introducing a Sisley into room 17 or under
other changes in the museum’s policy regarding the hanging of pictures. (31)
would no longer hold if the British government were to decide (perhaps in
order to bring British driving practices into conformity with those in the US
and continental Europe) that henceforth British motorists must drive on the
right. In addition individual motorists might, either as a result of inattention or
deliberate decision, drive on the right, thus disrupting (31). Finally, as already
noted, (5) will break down under interventions that consist of the introduction
of a non-dime coin into Clinton’s pocket.

Broadly speaking, examples like those just described seem to work in the
following way. We have a generalization that holds because certain back-
ground conditions or generating structures are in place (for example, a decision
to hang all Sisleys in room 18 or the existence of a convention that everyone
drives on the left, to which each driver finds it rational to conform, given that
others conform). Such generalizations are fragile or non-robust in the sense if
these background or generating conditions were to change the generalizations
would no longer hold—hence they are not invariant under such changes.
Nonetheless we may have very good reasons for thinking these background
conditions will in fact persist—(e.g. that the left hand side convention will
remain in force) and hence that the generalizations in question will continue to
hold. In these circumstances it will often be very plausible to accept counter-
factuals like (30) and (32) and (33) (at least when interpreted passively) that are
associated with these generalizations despite their non-invariance.

These examples illustrate how the traditional counterfactual test for law-
fulness embodied in the relationship between (27) and (28) and the test
associated with invariance come apart—a generalization can pass the
former test but not the latter. The requirement that laws and other explanatory
generalizations be invariant differs from the traditional idea that what is
distinctive about laws is that they will support counterfactuals of form (28)
in at least two respects. First, on the invariance-based approach we attach a
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special significance to a particular sort of counterfactual—active counter-
factuals whose antecedents describe interventions that realize or bring about
A. As the above examples (as well as our discussion in Section3) illustrate, a
generalization can support passive counterfactuals without supporting any
active counterfactuals (and hence without being invariant under any interven-
tions) at all. For example, although (29) supports some counterfactuals, it fails
to be invariant under interventions because it fails to support active counter-
factuals like

(34) If one were to introduce a Sisley into the museumviaan intervention, then
it would be in room 18.

This illustrates one respect in which the counterfactual test associated with
the notion of invariance is stronger then the traditional requirement that a
generalization of form (27) support some counterfactuals of form (28).

A second difference is this: on the traditional approach, one considers just a
single counterfactual of form (28) and asks, whether such a counterfactual is
supported by (27)—a question which presumably requires a single yes or
no answer.9 (This reflects the dichotomous character of the traditional law/
accident framework.) One assumes that a generalization either passes the test
of supporting (some) counterfactuals, and hence qualifies as a law, or else it
fails this test and is accidental. By contrast, as I have emphasized, a general-
ization can be more or less invariant and it can be invariant under one set of
interventions or changes and not under others. Instead of associating a kind of
single counterfactual with a generalization like (27), the invariance-based
approach suggests instead that we think in terms of a whole family of counter-
factuals whose antecedents correspond to different interventions or different
changes in background circumstances under whichA would be true and then
ask whetherB would also be true in those circumstances. Some of these
counterfactuals may turn out to be true and others false and together they
give us the range of circumstances or interventions over which the general-
ization is invariant. We thus do not confine our attention to a single world or set
of worlds that is ‘closest’ (however this is defined) to the actual world in which
A is true and ask whichB is true in that world but rather regard it as legitimate
to consider counterfactuals in whichA occurs under conditions that are very
dissimilar from those that hold in the actual world. For example, in considering
the range of changes over which the field equations of General Relativity are
invariant, it is perfectly appropriate to consider worlds in which the mass
distribution of the universe is extremely different from that obtaining in the
actual world (for example, worlds consisting of a single star or which are
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entirely empty of mass) and to ask whether the equations of GR would continue
to hold under such circumstances. Indeed, it is standard practice to assume that
those equations are highly invariant in the sense that they would continue to
hold under such extreme circumstances.

Similarly, although the automotive generalization (13) relating gas pedal
position and speed in a particular make of car may hold for other cars of that
make in circumstances that are close to the actual circumstances, so that in this
sense (13) is counterfactual-supporting, in assessing the range of invariance of
(13) we also consider what would happen under cases in which the internal
structure of the car and other features of its environment are changed in more
radical ways. It is the fact that we think that (13) would break down under many
such counterfactual circumstances that distinguishes it from less fragile gen-
eralizations like the field equations. Similarly, in evaluating whether a general-
ization like (31) is invariant, we consider not just whether (31) would continue
to hold in a world which is as much like the actual world as possible, consistent
with my driving in England, but also consider whether (31) would continue to
hold in circumstances that depart much more substantially from the actual
world. Thus we consider worlds in which, e.g. the British government issues a
decree requiring that everyone drive on the right, or in which Britain joins the
United States and adopts American driving habits or in which I drive in
England but no longer care about my own safety or that of others. To put
the point in a slightly different way, when we focus on invariance we replace a
single counterfactual of form (28) with a whole family or series of counter-
factuals corresponding to different ways of strengthening the antecedent of
(28)—we consider a whole set of counterfactuals of the form

(28*) If A andC were true, thenB would still be true.

where different possible interventions bring aboutA andC represents different
possible background circumstances in whichA might occur.

11 Are all invariant generalizations laws?
I suggested above that there are invariant generalizations that are not naturally
regarded as laws, if one has even a modestly demanding conception of what a
law is. Section13 will discuss some examples in more detail. Nevertheless, it
will be useful at this point to introduce a simple physical example that
illustrates the contrast I have in mind. My object in doing so is not to legislate
regarding the proper use of the word ‘law’ but rather to draw attention to
some differences between paradigmatic laws and other sorts of invariant
generalizations.

Consider again a particular sort of springS which, over a certain range of
extensions, conforms to Hooke’s law (17)F=–KsX, whereX is the extension of
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S, F the restoring force it exerts, andKs a constant characterizingS. Suppose
that (17) is invariant under some interventions that change the extension ofS,
but breaks down for extensions that are too large and for other sorts of changes
in background conditions as well. As we have seen, this fact by itself does not
distinguish (17) from paradigmatic laws of nature, such as Maxwell’s equa-
tions. Nonetheless, there appear to be several respects in which (17) does differ
from paradigmatic laws. First, as already discussed, (17) is much narrower in
scope. A second difference, which is perhaps more significant from the point of
view of explanation is this: not only will there be a range of ‘extreme’
extensions for which (17) breaks down but even if we confine our attention
to extensions ofS that are not in this range—i.e. extensions for which (17)
sometimes holds—there will be a large number of possible changes in back-
ground conditions that do not explicitly figure in (17), for which (17) will be
violated. For example, even if it is true that in ‘normal’ circumstancesSwill
conform invariantly to (17) under small extensions, it will not do so if it is
heated to a high temperature or cut with shears. Similarly, (17) will break down
if we intervene to produce even a small extension in the wrong way—for,
example, if the intervention physically deforms the spring. How we produce a
given value ofX in (17) and not just what that value is matter for whether (17) is
invariant under that change. The set of possible ‘interfering conditions’ for
(17) is very large and heterogeneous and will resist any simple, informative
characterization. Because we don’t know how to characterize all the items in
this set in a way that is non-circular and illuminating, we find ourselves saying
things like the following: (17) holds, if ‘other things are equal’ or in the
absence of ‘disturbing factors’ where no very precise independent specification
of the quoted phrases is available.

By way of contrast, although paradigmatic laws like Maxwell’s equations do
break down under certain extreme values of the variables that figure in those
equations, whether the equations hold or not depends just on the values of those
variables and not on how those values are brought about. That is, in contrast to
(17), within the classical regime for which Maxwell’s equations hold, it does
not matter how we change the distances between point charges, or the inten-
sities of electromagnetic fields and so on—Maxwell’s equations will continue
to hold under such changes. Moreover, changes in background conditions play
a different rule in connection with the invariance characteristics of paradig-
matic laws than in connection with generalizations like (17). When the
circumstances under which paradigmatic laws fail to be invariant are known,
they typically can be given a relatively simple, unified characterization. Such
circumstances seem to fall into one of two categories: laws break down either
for extreme values of variables that explicitly figure in the them (e.g. high
temperatures and pressures in the case of the ideal gas law) or when some very
small set of variables that have been omitted from the law diverge from a
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limiting value—the pattern being that the law holds when the variables take
this limiting value but not otherwise. For example, according to a well-known
textbook on General Relativity, the Newtonian inverse square law ‘is an
excellent approximation in the limiting case of low velocity in a weak
gravitational field’ (Ohanian [1976], p. 2). That is, the law breaks down both
when gravitational fields are strong (an extreme value of an included variable)
and also when an omitted variable (velocity) is not small in comparison with
the speed of light.

On this way of looking at matters, the differences between (17), on the one
hand, and paradigmatic laws like Maxwell’s equations, on the other, although
real, look very much like differences in degree (of scope and of range of
interventions and changes in background conditions over which these general-
izations are invariant) rather than of kind. Paradigmatic laws are simply
generalizations with wide scope that are invariant under a large and important
set of changes that can be given a theoretically perspicuous characterization.
We are willing to regard other invariant generalizations as laws to the extent
that we judge that they resemble these paradigms in these respects. It is thus not
surprising that the boundary between those invariant generalizations we regard
as laws and those that we do not regard as laws is fuzzy and contentious—an
additional reason for resisting models of explanation that require a sharp law/
non-law boundary.

These considerations raise in turn an obvious question: given that the
difference between Maxwell’s equations and (17) is one of degree, why not
reflect this continuity by extending the notion of a law to cover all general-
izations that are invariant under some interventions and changes in background
conditions, so that generalizations like (17) count as laws as well, albeit local
or qualified or ceteris paribus laws? In fact, many writers have proposed that
we do just this (Hausman [1992]; Fodor [1991]; Kincaid [1989]).

In thinking about this proposal, it is important to separate issues that are
largely terminological in the sense that they reflect decisions about how to use
the word ‘law’ from more substantive issues. To the extent that the proposal
under discussion accepts what I have say about the importance of invariance
and its role in explanation and simply extends the word ‘law’ to cover all
invariant generalizations, it differs only verbally from my own position. In
fact, however, few if any philosophers who have wanted to extend the notion of
law have had in mind only such a terminological proposal. Instead, philoso-
phers who have thought of generalizations like (17) (or the various general-
izations of the special sciences) as laws have usually been motivated by a very
different account from the one I have been defending of the features of such
generalizations which make them explanatory. They have tried to show that
such generalizations are explanatory in virtue of satisfying (or to the extent
they satisfy) various of the traditional criteria for lawfulness rather than in
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virtue of being invariant or figuring in the answers to a range of what-if-things-
had-been-different questions. For example, the treatments of so-calledceteris
paribuslaws, which are discussed in Section13, are all motivated by the idea
that if a generalization is to be a law and hence explanatory it must be or be
backed by an exceptionless generalization. The philosophers who advocate
such treatments are not merely proposing that we extend the word ‘law’ to
cover the explanatory generalizations of the special sciences but are instead
adopting a distinctive substantive position about the features (viz. exception-
lessness) which such generalizations must possess if they are to figure in
explanations.

It is in part for this reason—that in practice, the project of extending the
notion of law to cover the generalizations of the special sciences is closely
bound up with the (in my view thoroughly misguided) project of showing that,
despite appearances to the contrary, these generalizations are explanatory
because they satisfy (at least many of) the traditional criteria for lawful-
ness—that I think that clarity is best served by adopting a more restricted
notion of law. Moreover, there are additional reasons for such a restricted
notion. First, while there are, as I have argued, important continuities between
generalizations like Maxwell’s and (17), there are also very real differences.
While these may be matters of degree, they are not for that reason unimportant.
The features possessed by generalizations, like Maxwell’s equations—greater
scope and invariance under larger, more clearly defined, and important classes
of interventions and changes—represent just the sort of generality and uncon-
ditionality standardly associated with laws of nature. Their relative absence
from generalizations like (17) and from many of the explanatory general-
izations of the special sciences makes it misleading to assimilate these to
paradigmatic laws. Second, and perhaps more importantly, if the argument of
this paper about invariance and explanation is correct, there is no real motiva-
tion for such an assimilation. The claim that the explanatory generalizations of
the special sciences are laws would have an obvious motivation if there was
some independent reason for supposing that all explanation requires laws,
understood along the traditional lines. It would also have an obvious motiva-
tion if there were some independent reason to suppose that all generalizations
must fall into one of two mutually exclusive categories—the lawful or the
purely accidental. However, I have argued that we should reject these assump-
tions. Both are gratuitous—we don’t need to accept them once we have the
notion of invariance and the account of explanation sketched above. Once we
accept this alternative account of explanation, we don’t need to argue that the
generalizations of the special sciences are laws (thereby incurring the burden
of claiming that they do not differ in important respects from Maxwell’s
equations or that, appearances to the contrary, they satisfy such traditional
criteria as exceptionlessness) to vindicate their explanatory status. Finally, as
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will became clear in Section12, the more restricted usage that I favor also has
the advantage that it captures what seems to be at stake when philosophers and
scientists deny, as they frequently do, that the explanatory generalizations of
the special sciences are laws. Writers who take this position typically are not
merely making a proposal about terminology; instead they think that there are
important differences between generalizations like Maxwell’s equations and
many of the explanatory generalizations of the special sciences which a
descriptively adequate account of explanatory practice in different areas of
science should to aim to capture. The framework I have proposed allows us to
do this.

12 Invariance and structural equations
I now turn to some examples drawn from the structural equations literature
designed to illustrate in a more detailed way how the ideas about invariance
and explanation developed in previous sections apply to generalizations in the
special sciences.10 Suppose that we are interested in determining the extent to
which, for some population P of plants, the amount of water (X1) and fertilizer
(X2) received by an individual plant in P influences its heightY. To this purpose
we write down the linear regression equation

Y ¼ a1X1 þ a2X2 þ U ð35Þ

Herea1 anda2 are fixed coefficients andU is a so-called error term, which we
may take to represent other causal influences onYbesidesX1 andX2 that have
been omitted from (35).

What are the conditions that must be satisfied for (35) correctly to describe a
causal or explanatory relationship? On my view, these are just the conditions
set out in the general account of explanation in this essay: (35) must be
invariant under some interventions (on the variables figuring in (35)) and
must be such that it can be used to answer a range of what-if-things-had-
been-different questions. In particular, it should be true for some interventions
which change the right hand side variablesXi by the amountDXi, that these also
changeY in just the way represented by (35)—i.e. byaiDXi. To express what is
really the same idea in the language of invariance, if (35) correctly describes a
causal or explanatory relationship, then the relationship represented by (35)—
that is, its functional form and the values of the individual coefficientsai—
should be stable or invariant under some interventions on the right hand side
variables. For example, an intervention onX1 should not change the value of
the coefficienta1 or any of the other coefficients in (35), should not disturb the
linear form of (35) and so on.
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It should be clear that when (35) possesses this feature it will exhibit just the
sort of pattern of active counterfactual dependence which we took to be crucial
to successful explanation in Section4 above. That is, when (35) is invariant
under interventions in the way described we can think of it as answering a
range of what-if-things-had-been-different questions about plant height—as
telling us how the height of a plant (or perhaps the mean height in the
population P) would change in various ways as the amount of water and
fertilizer it receives is varied. In this way, we come to see how the amount
of water and fertilizer a plant receives makes a difference for or is relevant to
its height. Thus we can see in (35) the same features that we have found in the
other examples of successful explanation discussed in previous sections.
Obviously, (35) can be invariant in this way under some range of interventions
even if (as is plainly the case) (35) breaks down under other interventions and
background conditions, has limited scope, and lacks many of the other features
traditionally assigned to laws of nature. As long as we are seeking to explain
the behavior of a population of plants that falls within the domain of invariance
of (35) we may legitimately appeal to it to explain, even though (35) fails to
hold for other populations of plants in other background circumstances.

The generalization (35) concerns the behavior of plants but it is typical, in
the respects just described, of many of the generalizations discovered by
regression and other causal modeling techniques in social science contexts.
Consider, as a second illustration, the investigation carried out by Eric Veblen
in his ([1975]) and discussed at some length in Christopher Achen’s illuminat-
ing monograph ([1982]). Veblen is interested in the effect of editorial endorse-
ments by a particular newspaper, theManchester Union Leader, on New
Hampshire elections during the period 1960–72. He regresses a variable
(vote difference) measuring the difference between the vote for theUnion
Leader candidate in Manchester (where theUnion Leader’scirculation is
large) and the vote for this candidate outside of the Manchester area (where
the newspaper’s circulation is low) against a variable (slant) designed to
measure the number of favorable news stories a candidate receives. Veblen
finds that theprima facieeffect of favorable coverage is quite large: a change
from below to above average slant is associated with a 22 percent increase in
the vote for theUnion Leader’scandidate.

What does it mean to claim, as Veblen and Achen do, that this relation-
ship—call it (36)—is genuinely causal and that one can explain facts about the
vote that various candidates receive by appealing to facts about theUnion
Leader’seditorial policies? My suggestion is that what this means is that, given
certain background conditions characteristic of New Hampshire during the
period 1960–72, there is some range of interventions involving changes in
editorial policies over which (36) will be stable or invariant—that it is not true
that all such changes in editorial endorsements will disrupt (36)—and that,
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because of this, theUnion Leadercan use its endorsements to change or
manipulate voting patterns during this period. When the relationship between
vote and slant is stable under changes in the amount of favorable editorial
coverage a candidate receives in this way, one can appeal to such changes and
this relationship to answer a range of what-if-things-had-been-different questions.

It is clear, however, that, like (35) and the Hooke’s law relationship (17), the
relationship (36) is, at best, stable or invariant only under a very limited range
of interventions and changes in background circumstances. Veblen does not
claim, and it is almost certainly not true, that either the precise quantitative
relationship he finds or even the overall qualitative features of this relationship
(that endorsements positively influence vote) would continue to hold across all
changes in background conditions in the New Hampshire context or that these
would hold for other newspapers in different circumstances. For example, if
the extremely conservativeUnion Leaderwere to undergo a change in own-
ership and begin endorsing liberal candidates, it is doubtful that its endorse-
ments would continue to have the same effect on the vote. Indeed, there are all
sorts of possible changes in the political attitudes of New Hampshire voters,
and the behavior of political parties and candidates within New Hampshire that
would disrupt (36). Moreover, it is easy to imagine that in another population,
the effect of favorable news coverage by the largest circulation local news-
paper might be quite different. For example, the dominant newspaper in
Southern California, the relatively liberalLos Angeles Times, is strongly
disliked by many voters in neighboring conservative Orange County. One
would guess that editorial endorsements and favorable news coverage by this
newspaper would have a quantitatively smaller positive effect—if indeed the
effect is positive at all—on the voting behavior of this electorate. Again the
notion of invariance and the what-if-things-had-been-different-account of
explanation give us a way of understanding how the relationship Veblen has
discovered can be explanatory, despite the fact that it holds only a very
restricted set of circumstances. As explained above, a relationship can be
invariant even thought it has exceptions (outside of its domain of invariance),
is very narrow in scope, holds only over a limited spatio-temporal interval and
so on. We see all of these features in a relationship like (36).

The idea that, even when causal, the relationships discovered by regression
and other causal modeling techniques are likely to be invariant across only
very limited set of interventions and changes in background conditions or
across restricted spatio-temporal intervals is widely, although far from uni-
versally acknowledged, by social scientists themselves. For example, Achen
([1982], p. 12) uses Veblen’s research to motivate the more general claim that
usually in social science:

the researchers’ intent is to describe [ . . . ] for example [ . . . ] the effect of
the Catholic vote on the Nazi rise to power, or the impact of a preschool
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cultural enrichment program like HeadStart on poor children’s success in
school.Whatever the truth in such cases, one would not characterize it as
a law. Neither Catholics nor impoverished youngsters would behave the
same way in other times and places(my emphasis).

Elsewhere, he adds that in social science, ‘functionally specific laws are sure to
fail serious empirical tests. They always have’ ([ibid.], p. 15).

When Achen claims that relationships like (36) are explanatory but denies
that they are laws, what he seems to have in mind is precisely the sort of
contrast described in section10 between laws and other sorts of invariant
relationships. Generalizations like (36) are so restricted in scope and range of
invariance that it strikes Achen as unilluminating and misleading to assimilate
them to paradigmatic laws like Maxwell’s equations. On the other hand, one
can nevertheless appeal to these generalizations to explain. The notion of
invariance and the what-if-things-had-been-different account of explanation
show how this is possible.

Before proceeding, let me acknowledge a natural response to generaliza-
tions like (35) and (36). This is that although they are not entirely unexplana-
tory, they are shallow and superficial. One doesn’t understand at a very deep
level why the plants in P grow as they do if one only knows (35). A deeper
explanation of why the plants grow to the height they do would require a much
more detailed understanding of plant development and metabolism and of the
biochemical and physiological mechanisms by which water, fertilizer, and
other factors influence growth. Similarly in the case of (36), a deeper explana-
tion of the behavior of the New Hampshire electorate would focus (among
other things) on the psychological mechanisms by which editorial endorse-
ments influence voting behavior.

I fully endorse this assessment of (35) and (36) but see it as supporting
rather than undermining the ideas about invariance and explanation devel-
oped above. The generalizations—call them (37)—describing the biochem-
ical, molecular and cellular processes underlying plant growth do not provide
information that is different in kind from the information provided by (35)
but rather provide, as it were, more of the same. The generalizations (37) will
be invariant under a wider range of interventions and changes than (35) and
they can be used to answer a wider range of what-if-things-had-been-differ-
ent questions. For example, we might plausibly hope that these general-
izations will continue to hold if we apply amounts of water and fertilizer for
which the relationship (35) breaks down and hence can be used to explain
why such departures from linearity occur. Thus the relationship between (35)
and (36) will be like the relationship between the shallow gas pedal-speed
relation (13) and the deeper engineering theory of automotive mechanics in
Haavelmo’s example (Section5) and should be understood along similar
lines.
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13 Invariance andceteris paribuslaws
It will help to bring out what is distinctive about the ideas about invariance and
explanation that I have been defending if we contrast them with a standard
alternative account of the conditions that explanatory generalizations in the
special sciences must meet. I will call this thecompleteraccount—versions
can be found in many writers, from Hempel ([1965]), to more recently Fodor
([1991]), Hausman ([1992]) and Pietroski and Rey ([1995]). Each of these
writers adds refinements and complications, but in what follows I will focus on
the core idea. I shall argue that this is sufficiently mistaken that the embellish-
ments will not help. The completer account adopts the assumptions with which
we began this paper—that all explanation requires ‘subsumption’ under laws
and that a necessary condition for a generalization to count as a ‘strict’ or
unproblematic law is that it be exceptionless. (Recall the passage from
Pietroski and Rey (1995), quoted in Section8.) We then face the familiar
problem of reconciling these assumptions with the apparent paucity of excep-
tionless generalizations in the special sciences. In schematic form, the solution
proposed by the completer account is this: suppose one begins with a general-
ization of form (37) ‘All Fs are Gs ’ which has exceptions. (37) will be a
legitimate kind of law—a so-calledceteris paribuslaw—and will have
explanatory import if and only if there is some further conditionC such that
(38) ‘All Fs in C areGs’ is a strict or exceptionless law (that is,F andC is
nomologically sufficient forG) and neitherF by itself nor C by itself is
nomologically sufficient forG. Adopting (and somewhat modifying) some
terminology due to Fodor ([1991]), let us call such a conditionC a ‘completer’
for (37). The simplest version of the completer account then says that a ceteris
paribus generalization is genuine law and hence explanatory if and only if it
has a completer. It is crucial to the structure of this account that wenot impose
the requirement that some one who appeals to (37) to explain must be able to
actually describe its completerC in a non-trivial way or to state or produce the
exceptionless generalization (38). As we have repeatedly noted, it is rarely
possible to do this in the special sciences. Instead, it is enough that the
completer exists or, alternatively, perhaps that we know or have some
reason to think that it exists, even if we are unable to provide a non-trivial
description of it.

The apparent attraction of the completer strategy is that it allows one to retain
the idea that there is a sense in which explanation requires laws and that laws
must be exceptionless while at the same time according an explanatory role to
generalizations that have exceptions—this is accomplished by requiring that
(37) be ‘backed’ or associated with the exceptionless law (38). The idea is that
somehow (38), in virtue of its exceptionlessness, endows (37) with explanatory
import and gives it a status as a legitimate (ceteris paribus) law that it would not
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possess if it did not have a completer.11 We can also think of this strategy as
illustrating a general point made in Section11—that the claim that a general-
ization like (37) is a ‘law’ (albeit aceteris paribuslaw) becomes a substantive
claim and not merely a recommendation about terminology when it is
embedded in a more general set of ideas about the features a generalization
must possess (in this case, completability into an exceptionless generalization)
if it is to be explanatory. The claim that (37) is explanatory when and only when
it has a completer is a substantive claim, not a bit of verbal stipulation.

Despite its apparent naturalness, I believe that the completer strategy is
fundamentally flawed and that an appreciation of these flaws will bring out the
superiority of the invariance based account that I favor. To begin with, the
underlying motivation for the account is problematic. This motivation depends
on the idea that there is an invidious contrast betweenceteris paribuslaws like
(37), which have exceptions, and genuine or strict laws which are exception-
less, and that, because of this, to vindicate the former we must show that they
are backed in an appropriate way by the latter. However, as we have already
observed and as defenders of the completer account readily acknowledge,
there are few examples of exceptionless laws to be found anywhere in science,
even in fundamental physics. (Indeed, both Fodor ([1991]) and Pietroski and
Rey ([1995]) explicitly say that there may beno known examples of
exceptionless laws.) Surely, the natural conclusion to draw from this observa-
tion is that the whole idea that genuine laws must be exceptionless and that
explanation requires exceptionless laws needs rethinking. It is just this
conclusion that I have advocated in this essay.
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11 There is an epistemic puzzle here. Consider first the simplest version of the completer account
according to which the mere existence of a completer endows a generalization with explanatory
import even if those who use the generalization are unaware of its existence. It is far from
obvious how this is possible. In my view it is a plausible principle that explanatory information
must be information that is epistemically accessible. Explanations work by conveying informa-
tion that provides understanding and this seems to mean that such information must be
epistemically accessible to those who provide the explanation or are enlightened by it. If
some of the information allegedly conveyed by an explanation is information that cannot be
grasped or recognized by those who use the explanation, we may reasonably doubt that it is
through recognition of that information that the explanation provides understanding. If no one
knows that (33) has a completer (or even what a completer is) and yet (33) is used to explain, it is
hard to believe that its explanatory import is crucially bound up with whether it has a completer.
I think that a parallel conclusion holds if it is instead claimed that for (33) to be explanatory those
who appeal to it or those in the audience to which it is directed must know that it has a completer,
even if they do not know the identity of the completer. Why should merely knowing that (33) has
a completer but not the identity of the completer endow it with explanatory import? By contrast,
the account I have developed makes explanatory import depend only on epistemically accessible
information. Typical users of explanations of the sort described in previous sections are able to
recognize that they are within the domain of invariance of the generalizations they employ and
are able to see how these generalizations can be used to answer a range of what-if-things-had-
been-different questions. Information that is typically not epistemically accessible to users, such
as information about the exact boundaries of domains of invariance or the full range of
circumstances in which a generalization will break down is not information that is needed in
order to successfully explain.



In fact, as I shall now argue, the fundamental intuition underlying the
completer strategy is wrong—the distinction between those generalizations
that have completers and those that do not does not coincide with the distinc-
tion between those generalizations that are lawful (or invariant or explanatory)
and those that are not. Under the assumption of macrodeterminism, which
virtually all defenders of the completer strategy endorse, there are many
generalizations that have completers that no one would regard as explanatory
or as ceteris paribus laws. Consider the generalization

(39) All human beings with normal neurophysiological equipment speak
English with a southern U. S. accent.

This generalization is of course false—it has exceptions—but under the
assumption of determinism there will be a very complicated set of conditions
K that are nomologically sufficient in conjunction with being a human being
with a normal neurophysiology for speaking English with a southern accent
and which satisfy the other conditions for being a completer, such as those
described in Pietroski and Rey ([1995]). Indeed, we even have a general sense
of what those conditions are—they include some very complex set of
environmental conditions including appropriate early exposure to English
spoken with a southern accent. These together with being a human being
with the appropriate neurological structures are nomologically sufficient to
insure that one will learn to speak English with a southern accent. So (39) has a
completer—(40) ‘All human beings with normal neurophysiology inK speak
English with a Southern accent’ is not just exceptionless but arguably satisfies
many of the other standard conditions for lawfulness such as support for
counterfactuals. Nonetheless, (39) is surely not the kind of generalization
that anyone would regard as a ceteris paribus law—and not just because it
has many exceptions. Even if we imagine that (39) is exceptionless—that, as
the result of political and economic changes, all living humans were to come to
speak English with a southern accent and even if past history had been different
in such a way that throughout all history, all human beings spoke English with
a southern accent—(39) would not be a plausible candidate for a law of any
sort, ceteris paribusor otherwise. Nor can we appeal to (39) to provide an
explanation of why some particular person speaks English with a southern
accent.12 (We can, of course, appeal to (40) to explain this but (40) is not (39).)

By contrast, the invariance-based account does explain in a natural way why
(39) is a poor candidates for an explanatory generalization—it is either non-
invariant or invariant only under a very narrow range of interventions. Even if
as a result of political changes it becomes true at some future date that everyone
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in the world speaks English with a southern accent and even if, because the past
history of the human race was very different, it was true that all human beings
in the past had spoken southern English, (39) would still be highly fragile. Its
truth would depend upon a great many very specific contingencies and if these
were to change, (39) would be disrupted. Only in a very special and rare kind of
environments (rare in comparison with the full range of environments in which
human beings learn to speak some language or other) do human beings learn to
speak English with a southern accent.

We can further bring out the difference between the completer account and
the invariance based account by considering what the former has to say about
the contrast between, on the one hand, the ‘shallow’ generalization (13) linking
the position of the gas-pedal and the speed of a car and, on the other, the deeper
engineering style theory (14) described in Haavelmo’s example (Section5).
(13) has exceptions but, according to the completer strategy, will qualify as a
ceteris paribus law because there exists some complicated conditionK (spe-
cifying the details of the functioning of the car engine and the environmental
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suggested in the literature will help to support my claim that the difficulties are not easily
avoided. Pietroski and Rey ([1995], p. 90) add the additional constraint that the completer must
be ‘independent’ where this is understood in such as way as to ‘exclude factors whose only
explanatory role is to save a proposed c. p. law’ and to require that the completer must explain
other things besides the failure of the law. Their discussion conflates two distinct issues: whether
the completer is independent in the sense just specified and the epistemic issue of whether one
knows how to independently describe the completer in a way that is not tantamount to saying
that the law holds except when it doesn’t. The examples described above do involve completers
that are independent in the non-epistemic sense described in the quoted passage and hence are
counterexamples to their proposal. Hausman ([1992], p. 137) claims that ‘when one takes an
inexact generalization to be an explanatory law, one supposes that theceteris paribusclause
picks out some predicate that when added to the antecedent of the unqualified generalization
makes it an exact law’. This formulation appears to be straightforwardly subject to the counter-
examples given above. Hausman ([ibid.], pp. 140ff) also describes an additional set of condi-
tions which must be satisfied for it to be reasonable to believe that an inexactceteris paribus
generalization is completable into an exact law. The conditions appear to be unnecessary if, as I
have argued, the thesis of macrodeterminism by itself gives one very general reasons to believe
that there must be a completer. Moreover, quite apart from what it is reasonable to believe, the
fact remains that (39) is a trueceteris paribuslaw, according to Hausman’s characterization,
given the empirical assumptions described above and this is surely an unwelcome result. Would
it help if we instead took Hausman’s additional conditions as necessary conditions for it to be
true that a generalization qualifies as aceteris paribuslaw rather than as conditions on what we
have reason to believe? However we understand the role of the conditions, several of them seem
wrong-headed. For example, one of the conditions is that a ceteris paribus law must be ‘reliable’.
This requires that it be true, for allFs areGs to be aceteris paribuslaw, that ‘(perhaps after
making allowances for specific interferences), almost allFs areGs’ (p. 140). But, as explained
above even if (39) were true without exception, it wouldn’t be aceteris paribuslaw. Another of
Hausman’s conditions is that the ‘modifications or qualifications of the theory that make [a
candidateceteris paribusgeneralization] more reliable not bead hoc’ (p.141). But whether the
completer for a candidate c. p. law is simple or complex,ad hocor non-ad hoc, appears to have
little to do with whether it is invariant at all, and if so, over what range of interventions, and
hence little to do with whether it can be used to explain. Many generalizations in the special
sciences probably have very complex andad hoccompleters but this fact by itself does not make
them unexplanatory. Conversely, it seems perfectly possible for a generalization to have a non-
ad hoccompleter and yet be non-invariant and non-explanatory—again (39) may be a case in
point.



conditions in which it is operated) such that the generalization ‘InK, (13)
holds’ is an exceptionless law. For similar reasons, (14) will also qualify as a
non-strict,ceteris paribuslaw—there will be circumstances in which it breaks
down but it will also have a completer. However, the invariance-based
approach allows us to say that (14) furnishes a deeper explanation of the
behavior of the car because (14) is invariant under a wider range of interven-
tions than (13) and can be used to answer a wider range of what-if-things-had-
been-different questions. By contrast, the complete strategy provides no basis
for such a discrimination—all that it says about (13) and (14) is that they are
bothceteris paribuslaws. Again, I take this to illustrate how the invariance-
based account focuses on a very different set of considerations in assessing the
explanatory credentials of a generalization than the completer strategy. Simply
asking whether a generalization has a completer gives us no insight into the
range of changes over which it is invariant and the range of what-if-things-had-
been-different questions it can be used to answer. Yet it is just these questions
that are crucial to explanatory assessment.

Both of these examples illustrate the more general point that when we ask
whether a generalization has a completer and when we ask whether it is
invariant we are asking very different questions. The invariance of aceteris
paribusgeneralization like (37) ‘AllFsareGs’ depends not just on whether it
has a completerC but on the details of the way in which the holding of (37)
depends on both onC and on the various alternatives toC—on whether, for
example,C represents a special case with (37) holding only whenC does or
whether, on the other hand,C is a more generic case and (37) would continue to
hold under some range of alternatives toC. Again, the relevance of these sorts
of considerations to explanatory assessment are lost if we focus only on the
question of whether (37) has a completer.

13 Conclusion
In this paper I have argued for a number of general claims. First, explanations
involve the exhibition of patterns of active or non-backtracking counterfactual
dependence rather than nomic subsumption. Second, explanatory generaliza-
tions describe how changes in a set of explanans variables produce changes in a
set of explanandum variables and must be invariant under some range of
interventions on the explanans variables. Third, the requirement that explana-
tory generalizations must be invariant is very different from the traditional
demand that explanatory generalizations must be laws. Unlike lawfulness,
invariance admits of degrees. Moreover, the traditional criteria for lawfulness
are neither necessary nor sufficient for a generalization to be invariant or
explanatory. In particular, a generalization can be explanatory even if it is not
exceptionless and is very restricted in scope. A focus on invariance leads to a
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more illuminating account of the nature of explanatory generalizations in the
special sciences than alternatives such as the completer account.
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