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A probability function is required to be non-negative, normalized (tautolo-
gies are assigned the value 1), and additive. However, there is a controversy
as to how much additivity is required. Additivity principles apply to some col-
lection of incompatible events, and say that the probability of the disjunction
of these events must be equal to the sum of their probabilities. All theorists
accept this principle in cases where the collection is finite. Kolmogorov notably
endorsed the claim that this principle should hold in cases where the collection
is countably infinite, though not for larger collections.1

Countable additivity is often justified by its fruits — much of the orthodox
mathematical theory of probability depends on countable additivity for proofs of
various limit theorems and laws of large numbers. However, many philosophers,
following Bruno de Finetti, have challenged countable additivity. Although
it has some nice mathematical consequences, it also has some bad ones. For
instance, it rules out countably infinite fair lotteries.2 They say that additivity
principles should be justified by foundational arguments about the nature of
probability, and not by weighing the consequences of the assumption. They say
that once we think of things this way, we will see that countable additivity is
an arbitrary stopping point — they claim that the justifications for countable
additivity extend to full additivity for all infinite collections.3 Since few (if any)

1For an infinite collection of non-negative numbers, the sum of that collection is said to
be the supremum of the sums of the finite sub-collections. That is, it is the smallest number
such that no finite sub-collection adds up to more than that number. Countable sums are
sometimes defined slightly differently, as the limit of a particular sequence of finite partial
sums, but as long as the numbers involved are all non-negative (as they are for probabilities),
the two definitions will always agree — the order only matters to the standard sum definition
when negative terms are involved.

As it turns out, an infinite collection of non-negative numbers has a finite sum iff there is a
countable sub-collection such that these ones have a finite sum (equal to the sum of the whole
collection), and all other elements of the whole collection are 0. To see this, just note that an
uncountable collection of non-zero values has an infinite sum, and values that are 0 make no
contribution to the total sum.

2A fair lottery should have the same probability for each outcome. For an infinite lottery,
even finite additivity means that this probability can’t be positive, or else they would sum to
more than 1. Thus, if there is a countably infinite fair lottery, then all outcomes would have
probability 0, which would violate countable additivity, since the sum of any number of 0’s is
0.

3This requirement of full additivity amounts to the requirement that the probability dis-
tribution be “discrete”, in the technical sense that there are at most countably many possi-
bilities with non-zero probability, and these add up to 1. Countable additivity without full
additivity additionally allows distributions, traditionally called “continuous”, where there are
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theorists endorse full additivity, they say that we should reject the arguments
for countable additivity as well, and just endorse finitely additive probability
theory.

I will show that this is wrong. I give two arguments that probability func-
tions must satisfy countable additivity, which don’t generalize to support full
additivity. The first is suggested already by Brian Skyrms in his (1992) (and in
fact, one might see the argument on p. 255-7 of Spielman (1977) as a hint at it).
The second extends an argument of Pruss (2013), who uses a similar principle
as an argument against infinitesimal probabilities in countable lotteries. I will
not evaluate the consequences of finite, countable, or full infinite additivity here
— my purpose in this paper is to show that countable additivity is not merely
an arbitrary stopping point on the way to full additivity.

I will be considering collections of incompatible events whose disjunction
is the necessary truth, which I will call “partitions”. It is straightforward to
see that violations of an infinite additivity principle for a collection of events
whose disjunction is not the necessary truth will lead to violations involving
a partition, if one just adds the complement of the disjunction as one more
event in the collection. Thus, the restriction to partitions is only a device for
simplification, and not a significant restriction of the arguments.

1 Dutch Books

In the context of probability as degree of belief, it is common to use Dutch book
arguments to establish constraints on probability. These arguments assume that
an agent’s degrees of belief are determined by the odds at which she is willing
to bet. They then show that for an agent whose degrees of belief fail to satisfy
some property, there is a set of bets that she is individually willing to take that
together guarantee that she will lose money, while there is no such set of bets
for agents whose degrees of belief do satisfy the property.

Jon Williamson gives such a Dutch book argument for countable additivity
in his (1999). Interestingly, though he doesn’t remark on this fact, his argument
actually extends beyond countable additivity to full additivity. Importantly, his
argument assumes that an agent is wiling to accept any bet that occurs exactly
at the price considered fair by her degrees of belief. I will rehearse his argument
here, with some slight changes of notation. Afterwards, I will show that if we
only assume that agents accept bets at strictly favorable prices (as suggested
by Skyrms), then the argument only supports countable additivity.

There is a partition A, and for each a in A, the agent has degree of belief
qa in a. The attempted Dutch book will be defined by some stake-maker, who
chooses an amount Θa to stake on each a in A (subject to a condition to be
mentioned shortly). The agent will win Θa on this bet if a is true, and will
pay qaΘa for the bet. On the betting interpretation of degree of belief, each

uncountable collections of possibilities that individually have probability 0 but collectively
have non-zero probability. Finite additivity without countable additivity allows even more
distributions, like de Finetti’s countably infinite fair lottery.
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of these bets occurs at the price the agent considers to be exactly fair. If Θa

is negative, then the agent is interpreted as selling a bet. When the bets are
resolved, exactly one of them will pay out, but all of the sales will have been
transacted. Thus, the net gain for the agent is ΘaT

−
∑
qaΘa, where aT is the

unique member of the partition that happens to be true. There is a Dutch book
against the agent iff there is a collection of fair bets whose net result is negative
for the agent. That is, there is a Dutch book iff there is some appropriate
collection of Θa such that Θa is strictly less than

∑
qaΘa, regardless of which

element of A is actual.
The technical condition Williamson assumes on the stakes is that

∑
|qaΘa|

is finite. That is, the Dutch book can’t rely on an infinite amount of money
changing hands just in the initial buying and selling of bets. If the agent both
spends infinitely much money buying bets and gets infinitely much money selling
bets, then there is no well-defined outcome, so the collection of bets can’t really
be considered a Dutch book. And as Vann McGee showed in his (1999), if one
allows the agent to spend infinitely much money buying bets at the beginning,
one can create a Dutch book against any agent who allows infinitely many possi-
bilities whose probabilities are non-zero, regardless of what additivity constraint
the agent satisfies. There may still be worries about imposing this condition,
but the fact that this condition is the same in both Williamson’s argument
(which supports full additivity) and the modified version (which only supports
countable additivity) suggests that this condition is at least not relevant for the
issue that I intend to focus on.4

The idea of the proof is straightforward. If the qa sum to more than 1,
then the stake-maker has the agent spend more than 1 buying bets of stake 1,
so that the agent is guaranteed to lose. If the qa sum to less than 1, then the
stake-maker sells bets of stake 1 on each a to the agent for a total price less than
1, and claims 1 regardless of which a is actual. But if the qa sum to exactly 1,
then the total transaction cost is a weighted average of the stakes, and at least
one of the bets must have stakes at least as high as this weighted average, so
there is no Dutch book. This argument is made mathematically precise in the
next two paragraphs.

If there is a0 with qa0 < 0, then there is a Dutch book against the agent —
just let Θa0 < 0 and all other Θa = 0. If all qa are non-negative and

∑
qa < 1,

then there is a Dutch book against the agent — just set every Θa = −1, and
then we see that the agent’s total outcome is −1 +

∑
qa, which is negative,

regardless of which a is actually true. If
∑
qa > 1, then there is also a Dutch

book against the agent — in this case there must (by the definition of an infinite
sum as the supremum of the finite sums) be some finite subset A′ ⊆ A such that∑

A′ qa > 1. Set Θa = 1 for a in A′, and Θa = 0 otherwise. (The restriction to
a finite A′ ensures that

∑
|qaΘa| is finite.) Then the agent’s total outcome will

be ΘaT
−

∑
A′ qa, which is either 1 −

∑
A′ qa or just −

∑
A′ qa (both of which

are negative), depending on whether whether aT is in A′ or not.
On the other hand, if every qa is non-negative and

∑
qa = 1, then there is

4I’d like to thank Andrew Bacon for pressing me on this worry.
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no Dutch book against the agent. Let S =
∑
qaΘa, which was required to be a

well-defined finite real number. Then there is a Dutch book against the agent
iff every Θa < S. But if every Θa < S then S =

∑
qaΘa <

∑
qaS (because

every qa is non-negative, and at least one is positive, since they sum to 1). But∑
qaS = S

∑
qa = S, which contradicts this inequality. Thus, there is no Dutch

book against the agent.
Thus, we have shown that there is a Dutch book against the agent consisting

entirely of bets whose price is exactly fair iff there is some partition A such
that the qa are not a collection of non-negative numbers that sum to 1. It is
straightforward to see that this condition entails the standard axioms of finitely
additive probability theory. However, it also entails countable additivity, and
even full additivity. Nothing in this argument requires the set A to be countable.

This Dutch book was already considered by Skyrms in his (1992). However,
he notes that this argument only works if we assume that an agent is willing
to accept any bet whose price is exactly fair. He modifies this assumption and
shows that the result gives a Dutch book argument for countable additivity, but
no more. Note that if qa = 0 and Θa is negative, then the exactly fair price is
0. However, this bet gives the agent some chance of losing (if a is true), and no
chance of winning any positive amount. Thus, Skyrms doesn’t assume that an
agent will accept a bet at exactly the price equal to the stakes times her degree
of belief, but merely that an agent will accept a bet at any price strictly more
favorable than this one.

This suggests a slight modification of the description of the betting formal-
ism. We should require that each bet that is bought or sold is at a strictly
favorable price for the agent, rather than an exactly fair one. That is, whenever
Θa is non-zero (so that a bet is being bought or sold), the agent should also gain
some positive amount εa to make the bet favorable. The stake-maker should
choose values (Θa, εa), with εa > 0 if Θa 6= 0 and εa = 0 if Θa = 0, where the
agent pays qaΘa − εa for the bet, and wins Θa if a is true. For any bet with
non-zero stakes, the agent will accept the bet as long as the price is strictly bet-
ter (by εa) than the price implied by her degree of belief (qaΘa). The condition
that only a finite amount of money changes hands amounts to the requirement
that

∑
|qaΘa − εa| be finite. The Dutch book condition amounts to the claim

that regardless of which aT is the true one, we have ΘaT
<

∑
(qaΘa−εa), which

must be a well-defined finite real number.
This modified formalism gives rise to a Dutch book against agents whose

degrees of belief violate the traditional probability axioms including countable
additivity, but not against agents whose degrees of belief satisfy these axioms
while failing to satisfy full additivity for arbitrary infinite sets. The basic idea
is that when only a countable collection of bets is needed, then the εa for these
bets can be made small enough that they don’t ruin the Dutch book constructed
by Williamson’s argument. But if the only Dutch books with exactly fair prices
are uncountable, then the εa will add up to an infinite bonus payment for the
agent at the beginning, blocking the Dutch book. The remainder of this section
goes through the mathematical details of the argument.

Several parts of the Dutch book argument go through with only slight mod-
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ification. If some qa0 < 0, then choose Θa0 < 0 and εa0 < qa0Θa0 , and choose
all other Θa and εa equal to 0, and the result is a Dutch book. If

∑
qa > 1,

then there is some finite subset A′ with
∑

A′ qa > 1. Let ε =
∑

A′ qa − 1, let
Θa = 1 for a in A′ and εa = ε/n for some n larger than the number of elements
in A′, and let Θa and εa be 0 for a not in A′. This combination of bets still
yields a Dutch book. If every qa is non-negative and

∑
qa = 1, then there is still

no Dutch book against the agent, because the positive values of εa just make
things more favorable for the agent.

The case where things differ is the one where the qa are all non-negative,
and

∑
qa < 1. If A is countable, then we can still construct a Dutch book. Let

ε = 1−
∑
qa (which is positive) and enumerate the elements of A as ai. Let each

Θai = −1 and let εai = ε/3i. Then, regardless of which ai is true, the agent will
end up with −1−

∑
(−qai − ε/3i) = −(1−

∑
qa)+ ε

∑
1/3i = −ε+ ε/2 = −ε/2,

so the result is a Dutch book.
However, if A is uncountable, every qa is non-negative, and

∑
qa < 1, then

there is no Dutch book against the agent using this partition. Since the sum
of uncountably many positive numbers is infinite, the facts that every qa is
non-negative and

∑
qa < 1 imply that only countably many qa are non-zero.

Together with the facts that
∑
|qaΘa − εa| is finite, and that εa is positive

whenever Θa is non-zero, this means that there are only countably many Θa

that are non-zero. If the bets amount to a Dutch book, every Θa must be less
than S =

∑
(qaΘa−εa). Since all but countably many Θa are equal to 0, S must

be positive. Since the εa for any bets that are made are all positive, this means
that at least some qa must be non-zero (and thus positive). Since each Θa < S,
this means that S =

∑
(qaΘa − εa) <

∑
(qaS − εa) <

∑
qaS = S

∑
qa < S,

which is a contradiction. Thus, there is no Dutch book.
From these results, we can see that any agent whose degrees of belief satisfy

countable additivity (whether or not she satisfies uncountable additivity) will
have no Dutch book against her, if she only accepts bets at strictly favorable
prices. However, any agent whose degrees of belief violate countable additivity
will have a Dutch book against her, consisting only of strictly favorable bets.
Thus, if Dutch books with bets at strictly favorable prices give the constraints
for degrees of belief, then there is a non-arbitrary reason to accept countable
additivity, but not uncountable additivity. It is only if we assume that an agent
should accept bets that are priced exactly at her degree of belief that we get a
Dutch book argument for full additivity.

2 Comparative Probability

Dutch book arguments only make sense on the degree of belief interpretation
of probability. The new argument I will give doesn’t depend very much on
the interpretation of probability — the principle seems equally plausible for
chance, degree of belief, logical probability, and many other interpretations that
have been proposed. I will use a general principle that should hold for any
interpretation of probability to show that probability functions must be count-
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ably additive. Of course, the mathematical study of functions that are like
probability functions, but merely finitely additive, is still an interesting area of
theoretical research, but I claim that to the extent that my principle is plausible
for any theory that is appropriate to call “probability”, these functions are not
probability functions.

The argument will depend on one notion that is not itself part of standard
numerical probability theory, which is the notion of comparative probability. If
E1 and E2 are events, and P1 and P2 are probability functions, then I write
“(P1, E1) � (P2, E2)” to mean that E1 is (strictly) more likely according to P1

then E2 is according to P2. I assume that this notion is connected to numerical
probability, so that if P1(E1) > P2(E2) then (P1, E1) � (P2, E2), but (as I will
discuss later), I don’t assume that the converse always holds.

The principle I assume is as follows:

The Comparative Principle: If A is a partition for two probability
functions P1 and P2, then it is not the case that for every member
a of A, (P2, a) � (P1, a).5

This principle is adapted from Argument One of (Pruss, 2013), where it is used
to argue that probabilities should be real-valued and not infinitesimal-valued.
To justify it, he says, “surely there could not be a lottery with the same tickets
as [another] lottery, and yet still with every ticket being much more likely to
win.” If there could be two such lotteries, then every ticket-holder would prefer
the second lottery to the first, even though the lottery will have only one winner.
This would surely be absurd — any change to the probabilities in a single-winner
lottery that helps some ticket-holders must make some other ticket-holder worse
off. Similarly, if we think of the partition as defining a set of scientific hypotheses
that we are uncertain about, rather than lottery tickets, then a violation of
this principle would mean that an update from P1 to P2 would confirm every
alternative. Thus, it is reasonable that whenever this condition holds, P1 and
P2 can’t both give possible chances for some lottery on a given set of tickets,
or degrees of belief a reasonable agent might have in a given set of scientific
hypotheses. So the Comparative Principle seems like a reasonable assumption
for many different interpretations of probability.

I will show that if we restrict consideration to real-valued probability assign-
ments, then this principle gives an argument for countable additivity, but not
full additivity.

5This principle has some similarities to a principle known as “Conglomerability”, though
it is in a sense a dual to it. Conglomerability is the claim that for any partition A, there is no
event E such that P (E|a) > P (E) for all a in A. If we assume that the conditional distribution
given an event is itself a probability function whenever we start with a probability function,
then the Comparative Principle entails that there is no event E such that P (a|E) > P (a) for
all a in A, which is similar to an instance of Conglomerability, but distinct from it.

As it turns out, Conglomerability itself has some connection to countable additivity. Al-
though it is known that Conglomerability for all countable partitions is equivalent to countable
additivity (Schervish et al., 1984), it is also known that Conglomerability for uncountable par-
titions leads to further problems (Kolmogorov, 1950, Ch. 5).
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I will illustrate the principle with my argument in favor of countable addi-
tivity. de Finetti motivated the rejection of countable additivity by considering
the “de Finetti lottery” — one natural number will be drawn uniformly at ran-
dom, so that every number has the same probability. By finite additivity, that
probability must be 0 (if it is real-valued — my argument here is an adaptation
of the argument in Pruss (2013) against infinitesimal probabilities in this same
context), because otherwise there would be some finite collection of numbers
whose probability added to more than 1, which is impossible. Now consider the
“St. Petersburg lottery”6 — one natural number will be drawn at random, but
the distribution is not uniform. Instead, the number will be picked by repeated
flip of a fair coin, with the number being the number of flips that occur before
the coin first comes up heads. The probability that n is drawn is 1/2n.

The partition A is the set of natural numbers — in each probability function,
the numbers are considered to be pairwise incompatible, and exhaustive of the
possibilities. Now, for a given number n, let us ask in which lottery is this
number more likely to come up. In the de Finetti lottery, n has probability 0
(though of course it is possible). In the St. Petersburg lottery, n has probability
1/2n. Thus, for each number n, it is strictly more likely to come up in the
St. Petersburg lottery than in the de Finetti lottery. These two lotteries have
exactly the same possibilities, and yet every possibility is strictly more likely
on the second lottery than the first. Thus, the Comparative Principle says
that these two functions are not both probability functions. (This argument is
exactly parallel to the argument from Pruss (2013) against each natural number
having an infinitesimal probability, since these values would also all be less than
1/2n.)

This can be generalized. Let P be a merely finitely-additive measure function
and A = a1, a2, . . . be some countable partition of events such that

∑
P (ai) < 1.

Let ε = 1−
∑
P (ai). Let P ′ be such that P ′(ai) = P (ai) + ε/2i.7 Then P ′ is a

countably-additive measure function where every element of A is strictly more
likely than on P , which means that they are not both probability functions.8

In each case, all participants in the debate agree that the countably additive
function is a probability function. (To deny this, the defender of finite additiv-
ity would have to make the far more radical claim that something like the St.
Petersburg lottery is not just difficult to create in practice, but in fact impos-

6I give it this name because of its similarity to the definition of the classic “St. Petersburg
game” of decision theory, which is not relevant here.

7We may need to do some more work to extend P ′ to every event. For events that are
unions of events from this partition, we can extend it just by applying countable additivity.
If there are events that cross-cut the members of this partition, then some of the ai must
themselves be unions of smaller events, and we have to divide the excess probability among
these smaller events. I suspect that the decomposition in (Yosida and Hewitt, 1952) and
(Schervish et al., 1984) of every finitely additive probability function into a purely finitely
additive one and a countably additive one will do the work that is required.

8There will be some events that are more likely on P than on P ′. For instance, let E be
the complement of one of the ai. Since P (ai) < P ′(ai) we have P (E) > P ′(E). However,
this is no help — E is an event that is strictly less likely on P ′, but every outcome in E is
strictly more likely on P ′, which seems like an even more problematic violation of a related
comparative principle.
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sible as a probability function.) The defender of mere finite additivity insists
additionally that the merely finitely additive function is a probability function
as well, but this is a violation of the Comparative Principle.

Importantly, this argument only supports countable additivity. For an un-
countable partition, it is impossible to strictly increase the probability of every
event without there being some n such that at least n events end up with prob-
ability greater than 1/n, which is impossible. Thus, for any pair of probability
distributions over an uncountable partition, there must be some event where
the first assigns at least as great a probability as the second, and there must
be some event where the second assigns at least as great a probability as the
first. For example, we might have the following two probability distributions:
P1 is the standard uniform distribution on the interval [0, 1], while P2 is the
distribution that gives weight 1/2n to the number 1/n, and 0 to every interval
that doesn’t contain any of these numbers.

In order for this to be a violation of the Comparative Principle, it would need
to be the case that for every x in [0, 1], (P1, {x}) ≺ (P2, {x}). For x = 1/n,
this is clear. However, for other values x, we have P1({x}) = P2({x}) = 0.
We have not yet said anything about how ≺ compares an event that has the
same numerical probability on two different functions. And it’s clear that there
must be some cases where P1({x}) = P2({x}) = 0, and yet strict comparative
probability points in one direction or the other. For instance, a case on which x
is a possible outcome under P1 and an impossible one under P2 would be such
a case. So this could conceivably amount to a violation of the Comparative
Principle.

But in this case there is a further fact that seems to rule this out. For any
x that is not equal to 1/n, there is some interval containing x that has positive
probability on P1 but probability 0 on P2. Thus, although P1 doesn’t give a
higher numerical probability to any element of this partition than P2, it does
give higher density, so in this case it seems that (P1, {x}) � (P2, {x}). Thus,
some {x} are strictly more probable on P1 than on P2, making up for the ones
that are obviously strictly more probable on P2 than on P1. So this pair of
probability functions doesn’t violate the Comparative Principle. I don’t want
to assume that probability densities always suffice to determine comparative
probability (densities depend on the parametrization of the probability space,
but comparative probability presumably doesn’t). But in this case it seems clear
enough that there is no violation.

In order to unambiguously apply the Comparative Principle, we would need
a case where P1(a) < P2(a) for all a in A. But as mentioned above, if A is
uncountable, then at least P2 will violate finite additivity. Thus, the only finitely
additive, non-negative, normalized functions that are ruled out as probabilities
by the Comparative Principle are the ones that violate countable additivity.
This principle does nothing to rule out violations of full additivity. So we have
a second argument for countable additivity that fails to extend to full additivity.
Countable additivity is not an arbitrary stopping point.9

9I’d like to thank Alan Hájek for the conversation that initially led me to write this paper,
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