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1. Introduction

It has been widely argued that belief is not just an all-or-nothing atti-
tude—there is also a notion of belief that comes in degrees. Defenders
of this position generally also argue that these degrees of belief, or “cre-
dences,” obey something like the following principles:

. There is a set V of doxastic possibilities for each agent, prop-
ositions correspond to subsets of V, and the collection F of
propositions in which the agent has credences is an algebra.
(That is, F is nonempty, if a proposition is in F , then so is its
complement, and if two propositions are in F , then so is their
intersection.)1

. A rational agent’s credences are given by a probability func-
tion P. (That is, P(p) $ 0 for all propositions p, P(V) ¼ 1, and
P ðp < qÞ ¼ P ðpÞ þ P ðqÞ whenever p and q are disjoint subsets
of V.)

1. Some theorists prefer to think of the objects of credence as something more
sentential, rather than as sets of possibilities. The set-theoretic notation I use throughout
will have to be replaced by the corresponding syntactic notation: negation in place of
complement, conjunction in place of intersection, and so forth. The only significant
effect this will have on my argument is that at the end of section 4, when I discuss one
option that makes use of this setV, such a theorist will have to take the other option, which
uses the conditional credence function.
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. A rational agent’s conditional credences satisfy the relation
P ðpjqÞP ðqÞ ¼ P ðp > qÞ.2

The set of doxastic possibilities represents an agent’s certainties and
uncertainties. Its elements may be thought of as something like possible
worlds, except that they may satisfy propositions that are metaphysically
impossible, or possibly even contradictory. Any proposition that the agent
is not certain of must be false at some doxastic possibility. Some authors
might argue that belief just is truth at all doxastic possibilities, but I
suspect that many proper subsets of V will correspond to beliefs as well.
Belief does not entail certainty, the way such a proposal would suggest.

One straightforward consequence of these principles is that if a
proposition corresponds to the empty set, B, then a rational agent has a
credence of 0 in it.3 I will call such a proposition “doxastically impossible”
because it is not true in any doxastic possibility. Many philosophers also
endorse the converse:

Regularity: A rational agent has credence 0 in a proposition only if it is

doxastically impossible for her. Equivalently, a rational agent has credence

1 in a proposition only if it is certain for her.4

Some philosophers instead state a version with some sort of nondoxastic
modality, especially if they think of “doxastic possibilities” as having to be
logically or metaphysically possible. However, I take it that these authors
are generally committed to Regularity as just stated, as well as some ver-
sion of:

X-Y Transmodal Connection: Any X’ly possible proposition is Y’ly

possible.

If “Y” is interpreted as doxastic possibility for a rational agent, then this,
in combination with Regularity, entails that rational agents are only cer-

2. The most traditional understanding of conditional credence in fact defines P ðpjqÞ

to equal P ðp > qÞ=P ðqÞ, but if we allow for the possibility that P(q) ¼ 0, as is my goal in this
essay, then this needs modification. I will discuss some options in sections 1 and 2, but all
major proposals agree on the multiplicative formula given here.

3. Proof: the empty set is inF because there is some set inF , and the intersection of
this set with its complement is the empty set. B is disjoint from any proposition p, so
P ðp < BÞ ¼ P ðpÞ þ P ðBÞ. Since p < B just is p, this means that P(B) ¼ 0.

4. Some authors use the term “regularity” descriptively rather than normatively.
That is, for them, regularity is a property of probability functions, and there is a separate
requirement for rational agents to have regular probability functions. But I will use the
term “Regularity” to refer to the normative principle instead.
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tain of logical necessities, or metaphysical necessities, or something
similar.5 Conversely, if “X” is interpreted as doxastic possibility for a
rational agent, then we can interpret doxastic possibilities as possible
worlds, or logical models, or something else more familiar. However, I
will ignore these transmodal connections and focus instead on the prin-
ciple I have called Regularity.

Regularity is in tension with the fact that there are specific prop-
ositions that an agent can’t rule out, but for which any positive real num-
ber is clearly too high a value for the credence. I will call such
propositions, as well as the numerical values (if any) of their credences,
“minuscule” to avoid prejudging the question of whether their credence
is 0, or if they are represented in some other way. (Arguments for the
existence of minuscule propositions will be given in section 3.)

Skyrms (1980) (in a brief appendix) and Lewis (1980) (in two
quick paragraphs) try to resolve this tension by suggesting that credences
should not have to be real valued, but should instead be allowed to take
on “infinitesimal” values as well. They point out that in the 1960s, Abra-
ham Robinson showed the existence of mathematical structures, called
“hyperreals,” that behave very much like the real numbers, but include
elements that are positive but smaller than any positive real number. (For
instance, see Robinson 1996.) Skyrms and Lewis suggest that this theory,
especially as developed by Bernstein and Wattenberg (1969), can be used
to save Regularity, and this response has been generally accepted by phi-
losophers working in the area for the past several decades.6

I think that this situation is largely based on a mistake about the
role of numbers in mathematical representations. Probabilism uses a set

5. Some authors use these principles to argue that agents should use Jeffrey’s (2004)
alternative to the standard update method of conditionalization since it results in one
having credence 1 in one’s evidence, which is generally logically and metaphysically con-
tingent. However, if one takes standard conditionalization to produce doxastic necessity
and not just credence 1, then it is compatible with the principle that I call Regularity, so
Regularity itself can’t be dismissed just on the trivial grounds of incompatibility with a
standard update rule.

6. As examples, see Lewis 1996, 303; Swinburne 2001, 244; Holder 2002, 296; and
Norton 2007, 162. Note that Bartha and Hitchcock 1999 is not an instance of this sort of
use of hyperreals. As they say, “we are not committed to the existence of infinitesimal
degrees of belief or anything of that sort. Just as imaginary numbers can be used to
facilitate the proving of theorems that exclusively concern real numbers, our use of
[hyperreals] will be used to facilitate and motivate the construction of purely real-valued
measures.” Bartha and Hitchcock 1999, 416. However, the previously listed authors, and
others following them, do suggest that agents can or must have hyperreal credences.
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of possibilities to represent propositions, and real numbers to represent
credences. Because the real numbers are not fine grained enough to
capture all the distinctions in these doxastic states, Skyrms and Lewis
argue that we should use hyperreals instead. They focus on the numerical
aspect of a probabilistic representation and seek to expand it so that it can
represent all the relevant distinctions. But as I presented it above, prob-
abilism uses a set together with some numbers, and a conditional credence
function as well as an unconditional one. Both of these tools describe
important features of credence that shouldn’t be overlooked.

In section 2, I give what I take to be the four main arguments for
Regularity and show that these tools provide responses to all of them. In
section 3, I present the problem of minuscule propositions. In section 4, I
explain the hyperreals used by Lewis and Skyrms to respond to this prob-
lem, and in section 5, I show that they have too much structure to properly
represent credences in ordinary propositions. Although one might think
that the purely numerical representation with hyperreals is relatively
simple, it turns out to have complexities far beyond those that arise
from the consideration of the nonnumerical aspects of the standard
representation.

This is not a definitive argument against Regularity, and in the
appendix, I give quick overviews of a few other systems that might be used
to achieve the goals that motivate it. I think pursuing probability theories
based on any of these systems may be a valuable project and may help with
our understanding of credence. And in fact, the hyperreals may also help,
as long as we understand that they do not tell us the precise structure of
credences and that not all distinctions they make should be taken to be
significant. But for now, I claim that there is no reason to think credences
have structure beyond that given in the opening paragraph of this
introduction, with a set of doxastic possibilities, a standard real-valued
probability function (which may assign 0 to doxastically possible prop-
ositions), and a standard real-valued conditional probability function.

2. Arguments for Regularity

2.1. Learning Probability 0

The first argument for Regularity is based on conditional credence. Lewis
(1980, 267) says:

I should like to assume that it makes sense to conditionalize on any but

the empty proposition. Therefore I require that C is regular : C(B) is zero,
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and C(A/B) is undefined, only if B is the empty proposition, true at no

worlds.

The “C ” Lewis refers to is the hypothetical initial credence function of a
rational agent with no a posteriori information about the world. Lewis
and other Bayesians suggest that the appropriate way for a rational
agent to update her credences as she gains new information is to con-
ditionalize—that is, the credence P1 after the learning should be related
to the initial credences P0 by P 1ðAÞ ¼ P 0ðAjBÞ, where A is any proposition
in F , and B is the proposition learned. Many philosophers follow chap-
ter 1 of Kolmogorov 1950, where it is stipulated that P ðAjBÞ ¼ P ðA>BÞ

P ðBÞ ,
which is undefined if P(B) ¼ 0. But since an agent with no a posteriori
information should be able to learn any nonempty proposition, either
every nonempty proposition must have nonzero probability (as Lewis
claims), or there must be a way to update that goes beyond this standard
notion of conditionalization and the standard definition of conditional
probability.7

I will formalize the relevant version of the argument thus:

1. Any doxastically possible proposition can be learned.
2. When a rational agent learns B, she replaces her credence

P(A) with P(AjB) for every proposition A.
3. P(AjB) is defined as P(A > B)/P(B), and thus is undefined

when P(B) ¼ 0.
4. For a rational agent, learning can’t leave all credences

undefined.
5. Therefore, a rational agent doesn’t have credence 0 in any

doxastically possible proposition.

Premise 1 seems straightforward.8 For premise 2, consider what Skyrms
(1980, 74) says on his version of this argument:

7. Both this and the next argument assume that updating proceeds by condition-
alization. There is a commonly proposed alternative due to Richard Jeffrey, on which no
single proposition needs to be learned with certainty, so that the update is compatible with
maintaining uncertainty in the learned proposition, and thus is compatible with certain
transmodal connections. However, this alternative still relies on P(AjB), and is thus unde-
fined if P(AjB) is. Thus, using Jeffrey conditionalization instead of standard condition-
alization makes no relevant difference to either of these arguments.

8. The converse of this claim is perhaps more interesting—is it the case that every-
thing that can be learned must be doxastically possible? It seems plausible to me that we
ought to treat revisions where we give up a previous certainty as the kind that motivate an
alternative to conditionalization. This situation may be more usefully studied by tech-
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How do we assimilate new knowledge of a proposition with a prior prob-

ability of zero? . . . [P]erhaps at any rate we will need external rules for

some cases of belief-change not properly treated by conditionalization.

But the choice should be dictated by epistemological considerations, not

by the mathematics of the probability representation.

As I see it, Skyrms’s point is that although premise 2 may have some
problem cases, they will be epistemologically special update situations,
and not the ordinary ones we normally consider, so a relevant revision of
premise 2 will still leave some instances of this argument intact. Premise 4
also seems unproblematic. Thus we should focus on premise 3.

And indeed, premise 3 has serious problems. There is no need for
conditional probability to be understood in terms of Kolmogorov’s ratio.
Many other accounts of conditional probability have been proposed that
extend this account to cases where P(B) ¼ 0. Perhaps the simplest modi-
fication is described in Popper 1955, according to which conditional
probability is a primitive two-place function not defined in terms of
unconditional probability, but freestanding. Popper’s axioms guarantee
that whenever P(B) – 0, the standard relations still hold, but just add
the claim that P(AjB) is always defined. Instead of having P ðAjBÞ ¼

P ðA > BÞ=P ðBÞ, we just have P ðAjBÞP ðBÞ ¼ P ðA > BÞ, as I originally stated
in the introduction, which can hold even when P(B) ¼ 0. This sort of
account is argued for by Hájek (2003), among others. Another account,
quite similar to Popper’s, is discussed in Rényi 1970. And in fact, although
Kolmogorov (1950) stipulates the definition used in this argument in
chapter 1, in chapter 5 he presents another alternative, different from
the ones due to Popper and Rényi. (I argue for this account in Easwaran
2008a.) Two such accounts are compared by Seidenfeld, Schervish, and
Kadane (2013).

There are a variety of options available, so there is no reason for
the notion of conditional probability and its role in updating to demand
Regularity. The ratio account is popular because it allows conditional
probabilities to be defined entirely in terms of the unconditional cre-
dence function—the alternatives that I mention require in addition
some sort of primitive conditional credence function. But Hájek argues

niques related to the AGM model of belief revision (as introduced in Alchourròn, Gär-
denfors, and Makinson 1985), or one of its competitors. This gives us some epistemologi-
cal considerations in favor of modifying premise 2—perhaps it ought to be prefaced with,
“In any learning experience that doesn’t involve giving up any doxastic certainties, . . . ”
But this modification is of no relevance to the argument for Regularity.

K E N N Y E A S W A R A N

6



at length that the concept of conditional credence is at least as funda-
mental as that of unconditional credence, so that this mathematical pari-
ty is epistemologically significant and not just a quirk of the formalism.

Defenders of Regularity point out that some of these alternatives
(and in particular, Popper functions) have a close connection to hyper-
reals, and thus suggest that they aren’t really alternatives. For instance,
Vann McGee (1994, 180) says,

One approach, developed by Skyrms (1980) and Lewis (1980) is to use a

nonstandard [hyperreal-valued] probability assignment in which those

epistemically possible propositions that would ordinarily be assigned 0

probability are instead assigned infinitesimal probabilities. . . .The other

approach, developed by Karl Popper, is more direct. . . .We shall see that

these two approaches come to the same thing.

He then demonstrates that for every nonstandard-valued probability
assignment, the restriction of the conditional and unconditional prob-
ability values to their “standard parts” gives a Popper function, and that
every Popper function can be achieved in this way. However, the non-
standard-valued probability assignment corresponding to a given Popper
function is highly nonunique—the hyperreal representation of an
agent’s doxastic state is far more fine-grained than the Popper-function
representation corresponding to it.9 Thus, although there is a connec-
tion between these two representations, my arguments from section 5.4
will suggest that this extra level of fine structure in the nonstandard-
valued probability assignment isn’t real. It can be used for a purely math-
ematical description of the Popper function, but one shouldn’t read this
extra representational power as meaning anything about the actual
credences. The connection between these two options is not as tight as
McGee initially claimed.

Given that there are many available accounts of conditional prob-
ability that allow for conditionalization on propositions with credence 0,
for this argument to work, the defender of Regularity must give a non-
question-begging argument in favor of analyzing conditional credence
exclusively in terms of Kolmogorov’s ratio. Absent any such argument, the
most this line of reasoning can show is that there should be some way to
coherently update on any doxastically possible information. If we assume

9. In fact, there are distinct hyperreal probability assignments that correspond to
the same Popper function and yet actually give rise to different decision-making behavior
on the part of the agent. Halpern 2010, 168.
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additionally that conditionalization is the way to update, then this tells us
that the conditional credences should be well defined and should them-
selves form a coherent probability function. One might use the converse
of premise 1, and a premise claiming that any physical, metaphysical, or
logical possibility can be learned (perhaps with an exception for claims
like “I do not exist”), to give an argument for some sort of transmodal
connection. But none of this gives any support to Regularity itself.

2.2. Stubbornness

The second argument also proceeds from the rule of updating by con-
ditionalization, but considers A rather than B in P(AjB). As Lewis (1980,
268) says:

[Regularity] is required as a condition of reasonableness: one who started

out with an irregular credence function (and who then learned from expe-

rience by conditionalizing) would stubbornly refuse to believe some prop-

ositions no matter what the evidence in their favor.

Similarly, Skyrms (1980, 74) asks, “How can a proposition of prior prob-
ability zero come to have a posterior probability different from zero?”

As I understand the implicit argument, it starts with the mathemat-
ical fact that if P(A) ¼ 0, and P ðBÞ – 0, then P ðAjBÞ ¼ 0.10 Thus, if an
agent updates only by repeated conditionalization, and starts with
P0(A) ¼ 0, then at every time t, Pt(A) ¼ 0, so the agent will stubbornly
refuse to believe A, no matter what the evidence. Timothy Williamson
(2002, 214) gives a similar version of this argument as a reason not to
accept the Bayesian picture of probability.

I will formalize the relevant argument thus:11

1. P(A > B) ¼ 0 when P(A) ¼ 0.
2. When an agent learns B, she replaces her credence P(A) with

P(AjB) for every proposition A.

10. This is a consequence of the claim that P(A > B) ¼ P(AjB)P(B) together with the
fact that P ðA > BÞ # P ðAÞ. On the standard ratio analysis, it takes the apparently stronger
form that if P(A) ¼ 0, then P ðAjBÞ ¼ 0 if it exists at all.

11. This argument makes use of the notion of “high credence.” Intuitively, this
should mean something like “high enough for belief,” but everything about the argu-
ment, and my response to it, will work equally well if this is interpreted as “greater than
0.99999,” or “greater than 0.5,” or even “greater than 0.00001.”
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3. P(AjB) is defined as P(A > B)/P(B), and thus is 0 or unde-
fined when P(A > B) ¼ 0.

4. Therefore, if an agent has credence 0 in A, then she will
never have high credence in A no matter what evidence B

she learns.
5. For any reasonable agent, and any doxastically possible prop-

osition A, there is some evidence B such that learning B

would give the agent high credence in A.
6. Therefore, a reasonable agent does not have credence 0 in

any doxastically possible proposition.

As in my previous argument, I will reject premise 3. All the propos-
als mentioned above on which P(AjB) can be defined when P(B) ¼ 0
allow it to take on any value between 0 and 1 (depending on the circum-
stances), even if P(A) was 0. Thus, an agent can come to have high cre-
dence in A, as long as she learns some other proposition B whose initial
credence was also 0.

A defender of this argument might claim that if P(B) ¼ 0, then B

can’t be the evidence in an update. After all, most examples of minuscule
propositions (to be described in section 3) involve infinite precision and
may be beyond human observational capacities, so perhaps they can
never constitute an agent’s evidence. So if those are the only doxastically
possible propositions that get probability 0, then the argument could be
repaired by adding a premise that propositions with credence 0 are never
learned as evidence.

But if that’s right, and it’s impossible for humans to learn this type
of proposition as evidence, then “stubbornness” seems much less prob-
lematic—if something can never be learned as evidence, then it doesn’t
seem stubborn to refuse to give it high credence when learning other
things. So the defender of this argument faces a dilemma: either prop-
ositions with credence 0 can be evidence, in which case premise 3 is false;
or they can’t, in which case stubbornness is reasonable, so premise 5 is
false. Either way, one of the premises is false, so this is no sound argument
for Regularity. (Even conceding the conclusion, one of these premises
must be false.) A defender of infinitesimals might concede this point, but
still object that it is strange that only propositions with credence 0 can
provide enough evidence for an agent to have high credence in other
propositions with credence 0. But consider the following more general
argument:

Regularity and Hyperreal Credences
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1. P(A > B) is minuscule when P(A) is minuscule.
2. When an agent learns B, she replaces her credence P(A) with

P(AjB) for every proposition A.
3. P(AjB) is minuscule when P(A > B) is minuscule and P(B) is

not minuscule.
4. Therefore, if A is minuscule, then the agent will never have

high credence in A unless she learns some B that is also
minuscule.

This argument is just a modification of the first part of the above argu-
ment, but with the notion of probability 0 generalized to the notion of
being minuscule (that is, less than any positive standard real number).
This argument is valid, and all the premises are accepted by Lewis,
Skyrms, and other defenders of Regularity that appeal to hyperreals as
the values of credences for minuscule propositions (and even by many
defenders of alternative versions of Regularity that don’t use Robinson’s
hyperreals). In particular, for premise 3 to fail, there would have to be a
situation in which P(AjB) and P(B) are both standard positive real num-
bers, and yet P(A) is minuscule—but this would mean that either P ðA >

BÞ – P ðAjBÞP ðBÞ or P ðA > BÞ . P ðAÞ.
Thus, defenders of hyperreals face the same issue for minuscule

propositions that the opponent of Regularity does with probability 0.
They must offer the same sort of resolution, where only minuscule prop-
ositions can provide enough evidence for one to believe other minuscule
propositions. The only way to get around this is to either reject condition-
alization, or revise one of the basic laws of probability for P(A > B), either
of which would destroy this argument for Regularity.12

2.3. Dutch Books

Skyrms gives a third argument for Regularity that is not shared by Lewis.13

This argument extends the basic “Dutch book” argument for probabi-
lism. The basic argument shows that if an agent’s degrees of belief fail to
satisfy the probability axioms, then she is vulnerable to a “Dutch book”—

12. I thank Greg Novack and Mike Titelbaum for pressing me on this point and
making me realize that I should spell out the full parallel argument for the defenders
of Regularity.

13. Versions of this argument were also given much earlier, in Kemeny 1955, Shimony
1955, and Stalnaker 1970, where they refer to Regularity as “strict coherence.” I stick with
Skyrms and Lewis just because they are the ones referred to by contemporary philoso-
phers who defend Regularity and hyperreal credences.
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a set of bets such that she considers each one individually fair or favorable
(because its price is less than or equal to her degree of belief in the
relevant proposition), and yet the whole set collectively guarantees her
a loss. Since any rational agent views a guaranteed loss as neither fair nor
favorable, then (bracketing some assumptions about evaluating a combi-
nation of bets by combining the evaluations of the individual bets) there
is an inconsistency in her values.14

Similarly, Skyrms (1980, 74) suggests that if we allow for prop-
ositions of credence 0 to be doxastically possible, then “if we interpret
probability as a fair betting quotient there is a bet which we will consider
fair even though we can possibly lose it but cannot possibly win it.” That is,
if an agent’s degree of belief in A is 0, then she will view as fair a bet that
costs $0 with a payoff of $1 if A is true. However, if she is not absolutely
certain that A is false, and she sells such a bet, then she is in a situation in
which she has no possibility of making money, but a possibility of losing
money, which she must surely regard as an unfavorable position, rather
than a fair or favorable one.

I will formalize the argument thus:

1. Any rational agent evaluates a bet on A at a price equal to
[her credence in A times the stakes] as fair to buy or sell,
evaluates a bet at any lower price as favorable to buy, and
evaluates a bet at any higher price as favorable to sell.

2. No rational agent evaluates a bet as fair or favorable if it gives
some doxastic possibility for her to lose and no possibility to
gain.

3. Selling for $0 a bet on A with positive stakes results in losing
if A is true and has no possibility of gaining.

4. Therefore, no rational agent has credence 0 in any doxasti-
cally possible proposition.

The standard Dutch book argument for probabilism goes as follows:

1. Any rational agent evaluates a bet on A at a price equal to
[her credence in A times the stakes] as fair to buy or sell,

14. Some authors present the problem of vulnerability to Dutch books as a sort of
pragmatic irrationality, involving the fact that an agent who is actually willing to accept
each of these bets is practically irrational since she faces a guaranteed monetary loss. The
interpretation I give in terms of inconsistency of values is suggested by Skyrms (1987) and
Christensen (2001), and I think it is more compelling. But nothing depends on which
interpretation is used.
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evaluates a bet at any lower price as favorable to buy, evalu-
ates a bet at any higher price as favorable to sell, and evalu-
ates a combination of bets as fair or favorable if she evaluates
each individual bet as fair or favorable.

2. No rational agent evaluates a combination of bets as fair or
favorable if she is certain that they would collectively cause
her to lose.

3. An agent’s credences satisfy the probability axioms iff there is
no finite collection of bets with fair or favorable prices such
that she is certain they would collectively cause her to lose.

4. Therefore, a rational agent’s credences satisfy the prob-
ability axioms.

There are many well-known problems involving the first premise
of these Dutch book arguments (Hájek 2005, 2008). Thus, the opponent
of Regularity could just reject this argument along with the standard
Dutch book argument, by just rejecting anything resembling the first
premise of either argument. But I will not take this route—I will respond
to this argument in a way that is open for defenders of Dutch book
arguments.

The first possibility for rejecting the argument for Regularity while
keeping the standard Dutch book argument is to look at the difference
between the second premises—in the standard Dutch book argument,
there is a doxastic necessity of loss, while in the one for Regularity, there is
only a doxastic possibility of loss. This allows room for saying that neces-
sary loss is problematic in a way that the possible loss is not. But it seems to
me that this is a bullet-biting response—it would say that a rational agent
can accept a possibility of loss with no offsetting possibility of gain.

Instead, I will reject the first premise in each of these arguments
and accept only a weaker premise about favorability, rather than fairness:

1 0. Any rational agent evaluates a bet on A at any price lower than [her

credence in A times the stakes] as favorable to buy, evaluates a bet at

any higher price as favorable to sell, and evaluates a combination of

bets as favorable if she evaluates each individual bet as favorable.

In this version of the premise, I have made no assumption at all about
whether an agent evaluates a bet at exactly her credence times the stakes as
fair, favorable, or unfavorable.15 With this modification, if the first argu-

15. In fact, some have suggested that one must evaluate bets at precisely this price as
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ment is to be valid, its conclusion must be weakened to “Therefore, no
rational agent has credence less than 0 in a doxastic possibility.” This is no
longer Regularity itself but rather a trivial consequence of the probability
axioms.

However, the standard Dutch book argument can be made valid by
appealing to the slightly stronger theorem that is also true:

3 0. An agent’s credences satisfy the probability axioms iff there is no

finite collection of bets with favorable prices such that she is certain

they would collectively cause her to lose.

For any collection of bets with fair prices such that the agent is certain
they would collectively cause her to lose some positive amount, we can
alter the prices by a tiny fraction of this amount, to give a collection of bets
with favorable prices that have the same Dutch book property. Thus,
replacing premise 1 by 1 0 doesn’t jeopardize the standard Dutch book
arguments, so an opponent of Regularity can preserve the standard
Dutch book argument if she is so inclined.16

unfavorable. Smith (1961, 5) is an early example. I will be agnostic on this point and leave
open the possibility that something beyond the numerical value of one’s credences is used
to evaluate bets at exactly this price, so that some count as fair, some count as favorable,
and some count as unfavorable. Giving a full decision theory for cases with expected value
of 0 is beyond the scope of this essay.

16. As it turns out, I think there is some motivation for defenders of countable
additivity to make this modification of the argument. For any finite or infinite cardinality
k, there is a collection of k-many bets at fair prices that collectively make it doxastically
necessary that the agent will lose if his or her credences do not satisfy k-additivity. Thus,
with the “fair or favorable” version of the argument, we seem to get an argument for
additivity of arbitrary collections of propositions. But while some probability theorists
support additivity for countably infinite collections of propositions, they don’t generally
support additivity for uncountably infinite collections of propositions since this would
rule out uniform distributions on uncountable sets, just as countable additivity rules out
uniform distributions on countable sets. Thus, the defender of the “fair or favorable”
version of the argument needs to either distinguish between finite and countable collec-
tions of bets (for finite additivity) or between countable and uncountable collections of
bets (for standard countably-additive probabilism).

However, if we don’t assume that agents will evaluate bets exactly at the specified price
as fair, as in my modification, then we get a nonarbitrary reason to support countable
additivity but not uncountable additivity. The reason there is no support for uncountable
additivity is that any favorable price for selling must be positive, and the sum of uncount-
ably many positive numbers is always infinite. Thus, selling uncountably many favorable
bets on pairwise incompatible propositions never results in a guaranteed loss. But for the
countable case, the Dutch book still works. If the agent buys a bet on the union of a
sequence of propositions for 1 less than his or her fair price and sells each bet on the nth
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The defender of this argument for Regularity thus has to argue for
the stronger premise 1 rather than the weaker 1 0. One motivation would
be to say that there must be some price at which a bet is evaluated as fair—
not every price should be one that is favorable for buying or favorable for
selling. But this assumption is not available to the defender of Regularity

if the bets are monetary—money (and, by the argument I will give in
section 5.4, utility too) comes only in real gradations, so any positive price
for the bet is higher than the credence in a minuscule proposition and is
favorable for selling, while a price of 0 is favorable for buying, and no real
price is exactly fair. Only if the prices of bets themselves can have numeri-
cal values that are not standard real numbers can one maintain that every
bet has a price that is exactly fair.

But this brings us to the first instance of the “numerical fallacy.”
When a bet has a positive real expected value, these premises say it should
be evaluated as favorable. Premise 1 goes further and says that a bet with
expected value 0 should be evaluated as fair. This seems plausible if we
assume that the numerical expected value of a bet alone must tell us
whether it is fair, favorable, or unfavorable. But if we allow that nonnu-
merical features of the mathematical representation of an agent’s doxas-
tic state might matter as well, then 1 0 looks better. In cases where the
expected value of a bet is exactly the same as the status quo, some non-
numerical feature may serve as a tiebreaker. For any proposition in which
an agent has credence 0, the expected value of a bet at price 0 is exactly
the same as the status quo, no matter whether the bet is bought or sold.
However, the fact that in one case the agent has a possibility of winning
with none of losing, and that in the other case the agent has a possibility of
losing but none of winning, allows the agent to determine that one is
favorable and the other is unfavorable, and neither is precisely fair.

And in fact, there are other motivations for thinking that actions
might be evaluated by using some tool beyond numerical expected value.
For actions with infinitely many possible outcomes, some expected values
are infinite or undefined, which means that something other than numer-
ical comparison is necessary to evaluate which are better or worse (Nover
and Hájek 2004; Colyvan 2008; Easwaran 2008b). Similar issues arise if

proposition in the sequence for 1 / 2n more than his or her fair price, then the total result
will be exactly as if he or she had bought and sold the bets exactly at his or her fair price—
which would result in a Dutch book if his or her fair prices aren’t countably additive. This
Dutch book parallels the one Jon Williamson (1999) gives. Exactly this point about count-
able versus uncountable additivity is made by Skyrms (1992, 218).
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credences can be imprecise. (Adam Elga [2010] argues that there is no

reasonable decision theory for imprecise credences, but any appropriate
response to his argument will have to involve more than just single
numerical expected values.) We can keep the assumption that having a
greater expected value is sufficient for being preferable, but these cases
already show that it is not necessary. Thus, we should reject premise 1 in
both arguments and replace it by 1 0. The Dutch book argument for prob-
abilism can be saved by replacing its premise 3 by 3 0. But the Dutch book
argument for Regularity can’t be saved without weakening its conclusion
to a triviality.

2.4. “What 0 Means”

The final argument I will consider is rarely given explicitly, but I suspect
that it is the intuitive motivation that most defenders of Regularity have
for believing it. However, I will show that it too is an instance of the
numerical fallacy. The basic idea is related to the faithfulness of math-
ematical representations. A statement of the idea is given in Williamson
2002, 213: “For subjective Bayesians, probability 1 is the highest possible
degree of belief, which presumably is absolute certainty.”17

The main idea is that the degree of belief function is a measure of
the agent’s doxastic state with respect to a proposition. This function
measures propositions on a scale from 0 to 1 and assigns the value 1 to
doxastic necessities and 0 to doxastic impossibilities. If the function were
to assign the value 1 to some proposition other than a certainty, or 0 to
some proposition other than a doxastic impossibility, then this function
would not properly represent the agent’s attitudes because it would false-
ly represent her as equally confident in two propositions that she is not

17. Williamson follows this with a dramatic argument that an agent with such a high
credence should be willing to sell for a penny a bet where the agent is tortured if the
proposition comes out false. This example is related to the previous argument, but it also
seems to prove too much—not only would it rule out having credence 1 in any prop-
osition short of certainty, but it would also rule out credences of 1–1 for small enough 1.

Because of the well-known phenomenon of risk-aversion, it seems plausible that bets
with extremely large payoffs, either positive or negative, are evaluated at least partly by
some means other than expected utility. Thus, methodologically, we should limit con-
sideration to bets with small payoffs when intuitively judging the rationality of accepting
certain bets. If the possible loss is held fixed at a moderate value, while possible gain
becomes extremely small, then the conclusion doesn’t seem implausible. The dramati-
zation in terms of torture is a distraction—only the claim I quoted above, about the
“highest possible degree of belief,” is important. I thank Lina Eriksson for this point.
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equally confident in (namely, one that is doxastically contingent and one
that is doxastically necessary, or impossible). Thus, if a degree of belief
function properly represents an agent’s attitudes, then it must satisfy
Regularity.

I will formalize the argument as follows:

1. A doxastically possible proposition is more likely for an agent
than a contradiction.

2. If p is more likely than q for a rational agent, then
P ð pÞ . P ðqÞ.

3. If q is a contradiction, then P ðqÞ ¼ 0.
4. Therefore, for a rational agent, if p is doxastically possible,

then P ð pÞ . 0.

It is clear given my previous discussion that I will reject premise 2
as an instance of the numerical fallacy. If P(p) were the complete math-
ematical representation of how likely p is for an agent, then this would be
reasonable. But it isn’t. What we need is some mathematical relation
p s q that says when p is more likely than q. But this relation can depend
on mathematical facts beyond P(p) and P(q). As described in the opening
paragraph of the introduction, standard probabilism gives two further
mathematical features that might be relevant—the conditional prob-
ability function P ð�j�Þ, and the set V of doxastic possibilities.

If we use one of the alternative accounts of conditional probability
mentioned in section 2, then there will be distinctions between prop-
ositions the agent regards as certainly false, and propositions she merely
has credence 0 in. For instance, on Popper’s account, if ’ is a contra-
diction, then P ðpj’Þ ¼ 1 for any proposition p. (In particular,
P ð:’j’Þ ¼ 1!) It is natural to extend this behavior to other doxastic
impossibilities.18 However, Popper’s axioms allow for this to fail for dox-
astically possible propositions whose unconditional probability is 0.
Another natural picture might suggest that P ðpjqÞ is undefined when q

is doxastically impossible (perhaps because an indicative-type con-
ditional, as conditional probability is normally taken to be, makes no

18. On a set-theoretic formulation, this is trivial because a doxastic impossibility and a
contradiction are both represented by the same empty set. But even on a sentential
formulation, we can prove that the behavior does extend this way if we assume that
P ðpjqÞ ¼ P ðpjq ^ `Þ whenever ` is a doxastic necessity. If q is a doxastic impossibility,
then :q is a doxastic necessity, so P ðpjqÞ ¼ P ðpjq^ :qÞ ¼ P ðpjBÞ ¼ 1.
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sense when the antecedent is impossible), but is defined in all other
situations.

On both accounts, if q is doxastically impossible, but p isn’t, we will
have P ðpjp < qÞ ¼ 1 and P ðqjp < qÞ ¼ 0. Thus, we can define p s q as
meaning that P ðpjp < qÞ . P ðqjp < qÞ and get an ordering that validates
premise 1 while falsifying premise 2. The relevant distinction can be
captured in the conditional probability function rather than in the values
of the unconditional probabilities. On this approach, conditional cre-
dence would turn out to be more fundamental than the s relation.
Such a view has been argued for by Hájek (2003). (Note that some, but
not all, of the arguments there presuppose the failure of Regularity.)

On an approach where propositions are represented by sets of
possibilities, the distinction can also be captured in the set structure of
the propositions. Recall that the complete representation of the agent’s
credal state is the triple ðV;F ;P Þ and not just P by itself. With this rep-
resentation, we can draw the distinction between doxastically impossible
propositions (which correspond to the empty set) and others (which are
nonempty, even though their probability may be 0). There are many
situations where it is sufficient to consider the numerical values of
P and ignore the mathematical information contained in V and F ,
but the argument under consideration only works if we assume that P is
always sufficient. On this picture, we might say that p s q iff ðP ðpÞ . P ðqÞ

or q , p Þ. On this account, s is not a total ordering, but again it validates
premise 1 and falsifies premise 2.

In either case, the argument fails because premise 2 is false. Both
proposals for s accept the converse of premise 2 (if P ðpÞ . P ðqÞ, then
p s q). There would be a certain elegance to accepting premise 2 as
well. But it is certainly not essential to a proper mathematical theory of
s, once one considers the nonnumerical aspects of the mathematical
representation.

In fact, I will show in section 5 that the use of hyperreals to defend
Regularity leads to problems here. Although it can save the claim that if
p s q, then P ðpÞ . P ðqÞ, it violates the converse—there are propositions
where P ðpÞ . P ðqÞ, and yet intuitively, p Œ q ! The new numerical
representation overshoots the mark, and thus equally fails to faithfully
represent the agent’s credences. There may be purposes for which
extraneous structure is no problem, just as there may be other purposes
for which some missing structure is no problem. But if a mathematical
representation of credence is not to be a misrepresentation, then
missing numerical structure can be made up by considering nonnumer-
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ical mathematical structure, while extra numerical structure poses a more
serious problem.

However, before I can demonstrate this extra structure in the
hyperreals, I must present the problem of minuscule propositions and
explain the hyperreals that Lewis and Skyrms use to respond to them.

3. Minuscule Propositions

Defenders of Regularity have been forced to concede that some doxasti-
cally possible propositions have credence less than 1/n for any natural
number n. It would be an interestingly bold position to deny that rational
agents have credences in the propositions I will discuss in this section, or
to deny that any agent may rationally treat them as doxastic possibilities,
as a defender of Regularity without hyperreals, or another theory of
infinitesimals, must do. To make clear that these propositions must
have an extremely small probability (whether 0 or infinitesimal, or per-
haps otherwise described), I will call such propositions “minuscule.” For
convenience, I will also use the term “minuscule” as a term for numbers
that are less than 1/n for any natural number n, which are the probability
values of minuscule propositions. (I will reserve the term “infinitesimal”
for minuscule values that are nonzero, although some authors include 0
as an infinitesimal.)

As an example, consider a situation in which a dart is being thrown
at a dart board, and consider the proposition that the center of the dart
lands on the vertical line that precisely bisects the board. I claim that this
proposition is a minuscule one if the agent treats the throwing of the dart
as uniform, so that the probability that it lands in any given region is
proportional to the area of that region.

Consider the strip around the central vertical line that is exactly
1/n as wide as the board is—the probability that the dart lands in this
region is 1/n, and this region entirely contains the central vertical line.
Thus, the probability that the center of the dart hits the center line must
be less than 1/n for every n. But on the other hand, it seems clear that this
could happen, and so it seems like it should be doxastically possible—
after all, nothing is special about this line to prevent the dart from hitting
it, and every vertical line should be treated equally. Of course, one might
worry about infinitely precise centers of darts, and the requirement that
the agent distribute his credence uniformly over the board for the posi-
tions that it might hit. But as Hájek (2003) repeatedly points out, as long
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as a rational agent could possibly have positive credence in this setup, our
account of credence should allow for it.

For another example, consider a fair coin that will be flipped
infinitely many times, and consider the proposition that this coin
comes up heads on every single flip. On the one hand, the probability
of this proposition must be no more than 1/2n for any n because that is
the probability that the first n flips come up heads, which is entailed by
this proposition. But on the other hand, it seems that this proposition
really does describe a doxastically possible outcome of the sequence of
coin flips. By the symmetry of the situation, any two sequences of coin
flips should be treated similarly—there is no reason based on this setup
to treat some sequences as possible and others as impossible. Of course,
one might still have doubts about this situation because of the require-
ment that the agent believe the infinite sequence of coin flips has some
possibility of actually occurring—but a denier of minuscule propositions
must say that such things are not just nonactual, but doxastically impos-
sible for every rational agent.

For a more realistic example, consider the proposition that the
speed of light is exactly 2.998·108 m/s.19 Although our measurements
may have made us absolutely certain that the speed of light is not
2.997·108 m/s, or 2.999·108 m/s, there is at least some range of values
that have not been ruled out by any of our experimental observations.
And it seems that there is in fact some precise fact of the matter as to what
this speed is.20 However, for any n, we can surely come up with n disjoint
intervals (not necessarily of equal width), such that a rational agent could
regard it as equally likely (or almost equally likely) that the true value of

19. I have been told that the speed of light actually has a stipulated value that is used
as part of the definition of the meter and the second. Thus, properly speaking, I should
substitute some other physical constant (like the fine-structure constant, or the exponent
in some gravitational law) that has a value independent of our conventional choice of
units. Further, if our theories suggest that such “constants” can actually change in value
over time, then consider instead of the theory that it has a specific value, the theory that it
evolves according to a particular function over time.

Maher (1990, 387–88) gives a version of this argument together with a historical
claim that this accurately describes Cavendish’s opinions regarding the exponent in
the law of electrostatic attraction.

20. Even if some physical theories might suggest that space-time is discrete, in a way
that means there can be no such infinitely precise fact of the matter, surely we are not
completely certain that some such theory is true. Or we can consider the beliefs of some
scientist from a previous century that couldn’t rationally rule out theories according to
which a precise value exists.
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the speed of light is somewhere in one of those intervals. Each of these
intervals must have credence 1/n, so the credence for any particular value
contained in one of the intervals must be no greater than 1/n. Thus, any
precise specification of the value appears to be a physically realistic prop-
osition that is doxastically possible, but for which the probability must be
less than 1/n for any n.

Based on these three examples, and the ease of generating more
like them, we should agree that there are minuscule propositions.

Defenders of Regularity claim that minuscule propositions must
not be assigned probability 0, so if they want numerical values for the
probability function, then they need some theory of infinitesimals. For
Skyrms, Lewis, and their followers, Robinson’s hyperreals play this role. If
one instead rejects Regularity, one can just say that minuscule prop-
ositions have credence 0 and use objects other than the numerical prob-
abilities, like the set of doxastic possibilities, or the conditional credence
function, to represent the relevant differences.

4. What Are Robinson’s Hyperreals?

In order to discuss the reasons I think that hyperreals won’t be able to do
the work that is demanded of them, it will be important to be clear about
how they work mathematically. Skyrms and Lewis cite Bernstein and
Wattenberg (1969) for a mathematically sophisticated account of how
this could work, but they don’t consider the details explicitly themselves.
However, these details give rise to the problems I will discuss later, so I
rehearse them here. (More thorough discussions are given in Luxem-
burg 1973 and Robinson 1996.)

Robinson’s hyperreals form a mathematical structure that satisfies
the complete first-order theory of the real numbers and includes a copy of
the standard real numbers, together with some infinitesimals—positive
elements that are smaller than any positive standard real number.
Because these structures satisfy the complete first-order theory of the
real numbers, much of our standard reasoning carries over to them.
But it is important to note that this is only the first-order theory—we
must be careful about statements involving sets of real numbers.

The proof that such structures exist is not especially complicated.
It relies on a familiar result from first-order logic known as the Compact-
ness Theorem. This result states that if G is a set of sentences in a first-
order language, and if every finite subset of G has a model, then G has a
model. There are two standard proofs of this result—importantly, both
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make use of nonconstructive methods, based on the Axiom of Choice.
The first proof appeals to Gödel’s Completeness Theorem, which states
(nonconstructively) that a set of sentences has a model iff it is impossible
to derive a contradiction from these sentences. Thus if G didn’t have a
model, then it would be possible to derive a contradiction from it. But
since any derivation uses only finitely many sentences, this derivation
would use only some finite subset G0—so this finite subset G0 would
have no model. The second proof is preferred by model theorists, who
try to avoid reference to syntactic derivations whenever possible. On this
proof, the model for G is constructed directly from the models of its finite
subsets by means of an “ultraproduct” construction, which relies on the
Axiom of Choice to (nonconstructively) provide a suitable “ultrafilter.”
(See Chang and Keisler 1990, chapter 4, or any other model theory text-
book, for details.)

Given the Compactness Theorem, Robinson’s result is fairly
straightforward. Let L be a first-order language for talking about the
real numbers that includes a name for each real number, and add to it
a new constant c. Let G be the set of all sentences in L that are true about
the real numbers (including particular sentences like “2 , 5” and gen-
eral ones like “;x ðx ¼ 0 _ ’y ðx�y ¼ 1ÞÞ”), together with the sentences
“c . 0” and “c , K ” for each K that names a positive real number. Now
it is clear that every finite subset of G has a model—one such model will
just interpret all of L in the standard way and interpret c as a positive real
number that is smaller than any positive real number whose name is
mentioned in this finite subset. But then the Compactness Theorem
guarantees that G itself must have a model.

Because G includes all sentences of L true in the standard real
numbers, the model satisfies the complete first-order theory of the real
numbers. Because L includes names for each real number, the model
includes a copy of the standard real numbers. And this model must have
an interpretation for “c,” which must be positive (because G contains
“c . 0”) and smaller than any positive standard real number (because
G contains each 0c , K1). Thus, the model contains at least one infini-
tesimal. (Of course, c is not the only such infinitesimal—for example,
2c, c/5, and c2 will be among the infinitely many others. There will also be
“infinitely large” numbers like 1/c.)

A point that will become important later about this proof is that it
is nonconstructive—both proofs of the Compactness Theorem make use
of nonconstructive methods that go beyond Zermelo-Fraenkel set theory,
in the completeness case to give a maximal consistent set of sentences
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extending a given consistent set, and in the ultraproduct case to give a
nonprincipal ultrafilter to use as the base for the ultraproduct.21 In fact,
no constructive proof (either of the Compactness Theorem or of the
existence of hyperreal structures) is possible—there is no way to exhibit
a specific structure that provably shares the first-order properties of the
reals and contains infinitesimals.22

First-order equivalence is sufficient for the basic theory of prob-
ability because it means that the standard results about addition, multi-
plication, and ordering still apply, including things like commutativity,
associativity, existence of multiplicative inverses, and the preservation of
order under multiplication or division by positive numbers. However, for
some more advanced results in probability, we need second-order and
higher-order expressive power, to talk about sequences, limits, and
notions like topology and measurability for sets of reals.

Fortunately, even though the Compactness Theorem only applies
to first-order theories, much of this higher-order work can be expressed
in a first-order set theory, so that the Compactness Theorem can still be
applied. One theory that will suffice is full Zermelo-Fraenkel set theory
with the Axiom of Choice, but there are far weaker theories that will also
suffice, such as a sort of Russellian theory of types built up off the real
numbers. (See Burgess 2005 for discussions of some such systems. Section
4.4 of Chang and Keisler 1990 explicitly discusses the construction of
models that include the real numbers, infinitesimals, and a theory of
sets.) At any rate, we can let G be the set of all true first-order sentences
in this much larger theory, together with sentences about some constant c

that entail that it must be an infinitesimal, and the result will again be a
model of this large theory that manages to include infinitesimals, while
still making sense of all the constructions the original theory could
talk about.

But because we are dealing only with a first-order theory, and not
a true second-order theory, there will be some oddities with this model—
for instance, not every subset of the domain will be represented by one of
the objects that this model calls a “set.” A true second-order theory would

21. The Compactness Theorem and the existence of the relevant ultrafilters are both
equivalent to the Boolean prime ideal theorem, which is weaker than the Axiom of
Choice, but still independent of Zermelo-Fraenkel set theory (Moore 1982).

22. Kanovei and Shelah (2004) prove that given the Axiom of Choice, there is a
sentence that defines a particular hyperreal structure. But they also point out, as I will
in section 5, that given ZF set theory without the Axiom of Choice, it is consistent that no
hyperreal structure exists.
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quantify over all subsets of the domain, while a first-order theory for
talking about sets has a special domain of objects that play the subset
role. Nothing in a first-order theory can guarantee that all subsets are
represented there. Thus, there will be a distinction between the
“internal” sets that the model represents with these objects and “external”
sets that aren’t represented by anything in the relevant model.23 This
distinction will become important later. (For more on the distinction
between things that can be properly expressed in a first-order theory of
sets and things that require true second-order logic, see, for instance,
Boolos 1984.)

At any rate, the construction gives a model that behaves like the
real numbers, includes infinitesimals, and can talk about sets and se-
quences. Thus, the model has the expressive power needed for prob-
ability theory. Skyrms, Lewis, and their followers hope that by using one
of these models, rather than the standard real numbers, we can save
Regularity by applying the infinitesimal values to minuscule propositions.
However, the worries about external sets and sequences give some cause
for concern, and I will eventually show that they doom the approach.

5. There Are No Hyperreal Credences

An important recent argument against this use of infinitesimals is Wil-
liamson 2007. In this paper, Timothy Williamson argues that infinitesi-
mals can’t be used for the case of the minuscule proposition of a fair coin
coming up heads on all of its infinitely many flips. Williamson (2007, 4)
says that “infinitesimal probabilities may be fine in other cases, but they
do not solve the present problem.” Williamson’s argument rules out any
such use of infinitesimals, given some weak ordering assumptions and
some intuitions about the comparative probabilities of certain minuscule
propositions.

I present Williamson’s argument in the first subsection of this
section and suggest a response in the second subsection. In the third
subsection, I analyze what goes wrong with this response, and use it to
show that no calculation will yield a hyperreal credence for the kind of
proposition involved in this case. The fourth subsection gives the final

23. An example of such an “external” set is the set F of all finite numbers. If this set
existed in the model, then it would satisfy the following three first-order properties:
;x ðx , 1 ! x [ F Þ, ;x;y ððx [ F ^ y [ F Þ! ðx þ yÞ [ F Þ, ’x ðx � F Þ. However, in the
standard model, it is clear that no such set exists. Thus, since the hyperreal model satisfies
all the same first-order formulas as the standard model, it must not include such a set F.
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argument that shows that credences in these propositions can’t be hyper-
real even if they are assigned in some noncalculational way. Unlike
Williamson’s argument, my argument doesn’t rely on intuitions about
equiprobability, but only on the supervenience of credences on the physi-
cal world. My conclusion applies only to Robinson’s hyperreals, rather
than other theories of infinitesimals, but it shows that hyperreals can’t be
the credences of any ordinary proposition (that is, a proposition that
doesn’t itself explicitly mention hyperreals, or similarly complicated
mathematical objects), not just the one about infinitely many coin tosses.

5.1. Williamson’s Argument

Williamson’s argument proceeds as follows. Consider two fair coins that
will be flipped countably many times—for definiteness, say that they will
be flipped once per second, assuming that seconds from now into the
future can be numbered with the natural numbers. Let the first coin be
flipped starting at second 1, while the other coin is flipped starting at
second 2. Let A1 be the event that the first coin comes up heads on every
single flip, A2 be the event that the first coin comes up heads on every flip
after the first, and B1 be the event that the second coin comes up heads on
every flip. By the symmetry of the situation, we might judge that P ðA1Þ ¼

P ðB1Þ because it shouldn’t matter when exactly the flips occur, if they
occur in the same sort of sequence. However, we might also judge that
P ðB1Þ ¼ P ðA2Þ because these are corresponding sequences of flips that
happen at the same moment. But P ðA2Þ ¼ 2P ðA1Þ because A2 is indepen-
dent of the first coin coming up heads on its first flip, which has prob-
ability 1/2. So 2P ðA1Þ ¼ P ðA2Þ ¼ P ðB1Þ ¼ P ðA1Þ. Subtracting P(A1) from
both sides, we get that P(A1) ¼ 0. This argument works in the hyperreals
because the calculation was expressed entirely in the language of first-
order arithmetic.

As mentioned at the end of section 4, this is a case where the
advocate of hyperreals gets too much structure. We seem to have the
intuitions that A2 s A1, and yet A2 Œ B1 and B1 Œ A1. There is no way
to preserve these intuitions if s must correspond directly to something
numerical, which presumably must give a linear ordering. No matter what
values we have for P ðA1Þ;P ðA2Þ;P ðB1Þ, as long as P ðA2Þ . P ðA1Þ, it must
either be the case that P ðA2Þ . P ðB1Þ, or (as defended by Weintraub
[2008]) P ðB1Þ . P ðA1Þ. However, on either suggestion made at the end
of section 4, both of which may allow for s to be a partial ordering rather
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than a total ordering, the intuitions are preserved.24 By increasing the
fine-grainedness of the numerical values available, the advocate of hyper-
reals (or in fact any purely numerical representation) has made too many

distinctions in the probability values, rather than too few. They must thus
deny at least one of the intuitions in this case, in order to get P ðA1Þ . 0.

5.2. The Response?

In fact, a defender of hyperreals seems to have an argument that the
probability of an infinite sequence of heads must be nonzero—we seem
to be able to exhibit an infinitesimal that must give a lower bound on
P(A1). However, it will turn out that this response proves too much and
shows that every infinitesimal is a lower bound, so no value, infinitesimal
or not, could possibly be the correct value. Instead of solving the problem,
this attempted response makes things worse for hyperreals. But it will
help demonstrate the relevance of external sets for the applications of
the hyperreals, which will show that the hyperreals can’t serve the pur-
pose of aiding calculation.

The argument proceeds as a sort of dual to the argument that A1

was a minuscule proposition. Recall that in section 3, we considered the
proposition that the first n flips came up heads and showed that this
proposition has probability 1/2n, and since this proposition is entailed
by A1, the probability of A1 must be lower.

But imagine now that the coins will be flipped not just on every
second corresponding to a natural number, but also for all the seconds
corresponding to the additional infinitely large “hypernatural numbers”
in some specific hyperreal structure.25 (Ignore for the moment that these

24. Defining p s q iff ðP ðpÞ . P ðqÞ or q , p Þ, this works because P ðA1Þ ¼ P ðB1Þ ¼

P ðA2Þ ¼ 0 and A1 C A2, while B1 is neither a subset nor a superset of either of the other two
events. Defining p s q iff P ð pjp < qÞ . P ðqjp < qÞ, we have to be a bit more careful. As
long as P ðA1jA1 < B1Þ and P ðA2jA2 < B1Þ are both undefined, this suggestion will work as
well.

Williamson claims that we can’t have A1 s B, but his argument assumes that B1 X A2.
Both of the models just given show that if B1 and A2 can be incomparable, rather than
equally likely, then it can be the case that A1 s B. Williamson claims that we have an
intuition that B1 is equiprobable with A2, but I claim that our intuition is just that B1 is
neither more nor less probable than A2 and that we can’t reliably tell the difference
between these types of intuition. At any rate, the subtle differences between equiprob-
ability and incomparable probabilities with the same numerical value (Williamson and I
agree that these events all have probability 0) make such intuition-based arguments more
difficult.

25. To show that these infinitely large natural numbers must exist, recall that the
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additional flips change the case and may thus change the relevant prob-
abilities.) Now consider the claim that the coin comes up heads on every
flip up to some hypernatural N, and not just on the flips corresponding to
standard natural numbers. This proposition entails that every flip in the
original infinite sequence comes up heads (since the sequence up to N

includes all the standard natural numbers and more), and thus P(A1)
must be at least as large as its probability. But the probability of this claim
seems to be 1/2N, which is a nonzero infinitesimal. Thus, it appears that
P(A1) must be larger than some infinitesimal, and not equal to 0 as Wil-
liamson’s argument suggested!

However, this argument turns out to be too powerful. Let 1 be any
positive infinitesimal hyperreal. Then a version of this argument will show
that P ðA1Þ . 1. Since 1 is infinitesimal, 1/1 is larger than every natural
number. For any real number x . 0, there is an integer power of 2
between x and x/2. Since this is a first-order claim, the nonstandard
model must satisfy it as well—when x is 1/1, call the relevant number
2N. N must be a hypernatural number since otherwise 2Nþ1 would be a
standard natural number larger than 1/1. But now consider the claim
that every flip up to N comes up heads. This proposition still entails A1,
but it has probability 1/2N, which is greater than 1.

Thus, we see that P ðA1Þ . 1, as claimed. Since this is the case for
every 1, this means that although any positive real number is too large to
be P(A1), every infinitesimal is too small—but by definition, there is
nothing smaller than every positive real number except for these infini-
tesimals. So no value is possible.

5.3. Calculations with Internal and External Sets

The problem with these arguments is that we are trying to use a nonstan-

dard model to calculate the probability that every standard flip comes up
heads. If we are using a nonstandard model that can talk about sets of
numbers as well as numbers, then it turns out that the set of all standard
natural numbers is an “external” set that this model can’t talk about—

standard model satisfies the claim that for every x there is a natural number between x

and xþ 1, and also the claim that every real number has a multiplicative inverse. Since
these are first-order claims, the nonstandard model must satisfy them as well. If 1 is some
infinitesimal, then 1/1 must be infinitely large—1 is less than 1/n for every standard
natural number, so 1/1 must be larger than each n. But any “natural number” N between
1/1 and 1/1þ 1 must be an infinitely large natural number, which we can call a “hyper-
natural number.”
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therefore, it should be no surprise that this model can’t be used to cal-
culate a specific probability for events defined in terms of this set.

To show that the set of standard natural numbers is external, con-
sider the normal argument that the probability that the first N flips all
come up heads is 1/2N. This argument works by induction. If N ¼ 1, then
the probability that the first N flips all come up heads is clearly 1/21. Now,
we assume that the claim is true for N and show that it is true for Nþ 1.
The next flip of the coin is fair, and thus has probability 1/2 of coming up
heads. The first N flips and the next flip are independent, and so the
probability that the first N flips come up heads and the next one does is
the product of their two probabilities, which is 1=2N�1=2 ¼ 1=2Nþ1.
Thus, by induction, this must be true for all N.

But induction is a second-order principle. It says that for any set of
natural numbers, if the set contains 1, and contains Nþ 1 whenever it
contains N, then the set contains all positive natural numbers. But notice
that in a hyperreal model, the set of standard natural numbers violates this
principle since it leaves out the hypernaturals. If the language and logic
used for calculations with infinitesimals (and other nonstandard num-
bers) has an induction principle that holds for all sets that it recognizes,
then the set of standard natural numbers is not a set internal to this
model, so it can’t tell us anything about the probability of an event essen-
tially involving the set of standard natural numbers, like the one William-
son is interested in. Conversely, if the model does give a way to calculate
the probability of this event, then it doesn’t satisfy the full induction
principle, and there is no way to calculate the probability of N flips all
coming up heads. Either way, the attempted response to Williamson’s
argument fails.

And this holds more generally, not just in the example that Wil-
liamson considers. If we use the hyperreals to calculate the probability of a
proposition, then there are three possibilities. The proposition might be
an “ordinary” proposition, which the language can express using only
standard first-order vocabulary (such as the proposition that the first 739
flips come up heads, or that the dart falls exactly on the center line of the
board). The proposition might be one that the language can express, but
only using vocabulary that refers to particular nonstandard elements of
the hyperreal model (such as the proposition that the first N flips come
up heads, or that the dart falls within 1/N of the center line of the board,
where N is a particular hypernatural number). Or the proposition might
be one that the language can’t express at all (like the proposition that
every standard flip comes up heads).
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In the first case, since the calculation is first-order and uses only
standard vocabulary, the first-order equivalence between the hyperreals
and the standard reals means that the result must be the same as if we
calculated with the standard model—so the result can’t be infinitesimal.
In the third case, we just can’t use the model to do the calculation—we
need some extended technique. Only in the second case can this method
assign an infinitesimal value. But these cases can’t provide an argument
for the use of hyperreals in describing mental states since they already
presuppose that propositions involving hyperreals get credences. At any
rate, the ordinary minuscule propositions discussed in section 3 must get
probability 0. And this would mean giving up Regularity, which was a
primary motivation for using the hyperreals in the first place.

To sum up: the argument against Williamson’s assignment of
probability 0 to an infinite sequence of heads failed because it tried to
do a calculation on a set external to the language. And this is a general
problem for the hyperreals—any proposition expressible in standard
vocabulary whose probability is calculated in a hyperreal model must
get a standard probability.26

5.4. The Complexity Argument

In response to these earlier points, a defender of Regularity might suggest
that hyperreal probabilities are assigned in some language-external way
that doesn’t involve any calculation within the model.27 In this section, I
will show that this sort of response can’t work—at least, any such assign-
ment of hyperreal values to credences in ordinary propositions (ones that
can be expressed using only standard vocabulary) will impute some struc-
ture that actual credences of physical agents themselves can’t have.

Although Bayesianism concerns itself with idealized rational
agents, and not the imperfect physical beings we encounter in our daily
life, I claim that the essentially nonphysical nature of agents with hyper-
real credences makes them irrelevant for the epistemology of physical
agents. The other idealizations, of logical omniscience and the like, are

26. A similar argument against the possibility of infinitesimal chances rather than
credences is given in Barrett 2010.

27. In effect, this is how the proposal in Bernstein and Wattenberg 1969 works, which
is cited as a model by both Skyrms and Lewis. The hyperreal interval [0,1] is broken up into
N segments, where N is some particular infinitely large hypernatural number, and this
division is used to assign probabilities to various subsets of the standard interval [0,1]
(without hyperreals) so that every singleton has nonzero probability.
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not physically impossible, and we can make sense of a way in which actual
imperfect agents might become more and more like these idealized
agents.28 These idealizations are like the ones from physics involving
frictionless surfaces, and infinitely deep water for waves to travel on.
But where these idealizations involve the removal of some limitation, the
hyperreals involve the addition of nonphysical structure. Although I
phrase my argument in terms of the actual credences of physical agents,
it works just as well for any rational requirement on physical agents. Just as
no agent could have a credence that was a particular hyperreal, no agent
could have a rational requirement involving some particular hyperreal.

The premises and conclusion of the argument are as follows:

1. Credences supervene on the physical, in the sense that there
is a function that takes as input a complete mathematical
description of the physical world, and a specification of
an agent and a proposition, and returns as output the num-
ber representing the credence of the agent in that prop-
osition.29

2. The function relating credences to the physical is not so com-
plex that its existence is independent of Zermelo-Fraenkel
set theory (ZF).

3. All physical quantities can be entirely parameterized using
the standard real numbers.

4. The existence of a function with standard real number
inputs and hyperreal outputs is independent of ZF.

5. Therefore, credences in ordinary propositions (ones
expressible without mention of hyperreals or closely related
notions) do not have hyperreal values.

28. In fact, the statement of Bayesianism from the first paragraph of the introduction
doesn’t even involve this much idealization. Because of the use of doxastic possibilities,
there may be logical necessities that the agent fails to have credence 1 in. Because there is
no diachronic rule of updating, there is no requirement of perfect memory. There may
still be some sort of idealization involved in the construction of the set of doxastic possi-
bilities, but we can think of this set as being in a way implicitly defined by the entirety of the
physical facts about the agent, even though no particular doxastic possibility is rep-
resented by any particular thing in the agent’s brain.

29. In the sections defending Regularity, I was very interested in the nonnumerical
aspects of credence, but the discussion here of hyperreal credences is just about the
numerical representation.
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The first two premises of the argument express a form of physical
supervenience about credences—there couldn’t be two worlds that agree
on the entirety of the physical facts and yet are different in terms of the
credence a particular agent has in a particular proposition, and the pat-
tern of dependence is (in some very generalized sense) computable.
Premise 3 is an assumption about the structure of the actual physical
world. Together, these first three premises entail (given only standard
set theory) that there is a function that takes a standard real number
description of the universe as an input, together with a specification of
an agent and a proposition, and gives that agent’s credence in that prop-
osition as an output. Premise 4 is a mathematical result that I will dem-
onstrate further on, and it implies that this function can’t take a
proposition described entirely in terms of standard real numbers and
give a hyperreal output, which is the conclusion of the argument.

While premises 1 and 3 might be controversial, it is only essential
to my argument that they be at least plausible. The defender of hyperreal
credences must deny at least one of these assumptions, which would
entail doing serious physics, or philosophy of mind. It seems wrong to
judge the answers to these questions based on an epistemological prin-
ciple like Regularity. One should have independent grounds for rejecting
these assumptions in order to reject my conclusion. (But see note 31 for a
further concern about rejecting premise 3.)

Premise 2 can be motivated as a version of the Church-Turing
thesis. This thesis states that all intuitively computable functions can be
computed by Turing machines. Many authors have suggested stronger
versions saying that in fact any mental process whatsoever can be simu-
lated by a Turing machine. They have often defended this claim by appeal
to an even stronger principle stating that any physical process can be
simulated by a Turing machine. Since anything simulated by a Turing
machine can be proven to exist within the framework of ZF set theory,
without appeal to anything more complicated, this would entail premise
2. And of course, premise 2 is much weaker—there are plenty of non-
computable functions that can be perfectly well defined within ZF (for
instance, Turing’s original “halting function,” and most other standard
examples of noncomputable functions). Of course, the strong physical
version of the Church-Turing thesis may be implausible, as argued by
Copeland and Sylvan (1999) (as well as by many others). But proposed
challenges to it only go a few levels up the Turing hierarchy, and don’t
come anywhere near the complexity level of ZF, much less beyond it.
There’s no clear motivation for thinking that the interpretation of physi-
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cal processes as mental ones should introduce this particular type of
logical complexity, unless one were already committed to using hyper-
reals or something similar.

My argument doesn’t make any assumptions about what form the
physical realization of credences takes. If an agent’s mental state must
include a concrete representation within her brain of every single prop-
osition that she has credences in, together with a representation of the
value of that credence, then I might be able to strengthen the conclusion
to show that no proposition gets hyperreal credence. The defender of
Regularity might use this sort of picture to argue that physical agents can’t
have credences in the sorts of infinitary propositions argued to be
minuscule. But on most accounts, mental states can involve physical
processes outside the agent’s brain and can be dispositional in ways
that don’t require explicit representation of every proposition or doxastic
possibility.

My assumptions are consistent with the following scenario. Per-
haps an agent can have dispositional credences just by having a commit-
ment to some kind of uniformity over her doxastic possibilities. The agent
might be unsure whether a particular dartboard with width one meter is
properly parameterized by the real numbers or by the hyperreals, and be
committed to credence 1/2 in each.30 Her commitment to uniformity
may be sufficient to fix her conditional credence in every proposition of
the form “the exact center of the dart hits some point within x meters of
the vertical line at the center of the board” to be 2x, conditional on the
board being parameterized by the hyperreals. If so, then for any particu-
lar hyperreal x, the agent will dispositionally have hyperreal credence in
this proposition, even though he or she is unable to grasp the proposition
directly. Of course, such a proposition is not an “ordinary” proposition
since we need to use a hyperreal to even state it. But my argument shows
that even on such a dispositional account of credences, physical agents
don’t have hyperreal credences in ordinary propositions.

Something like premise 3 is clearly essential for an argument
like this to work. If the physical world really does involve magnitudes
with the structure of the hyperreals, then it is not hard to see how
agents might conceivably have hyperreal credences.31 For instance, it

30. Premise 3 entails that in fact every dartboard is properly parameterized by the real
numbers. But, as already mentioned, this fact is compatible with at least some reasonable
agents being unsure of it.

31. Interestingly, although hyperreal physics might allow hyperreal credences, it may
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could be that credences in particular propositions are given by the precise
voltage drop across some particular neuron or synapse in the agent’s
brain. If voltages can be hyperreal, then these sorts of credences can be
too.32 But my argument shows that if none of the fundamental physical
quantities have hyperreal structure, then even a substantially more com-
plicated realization of credences (possibly involving not just the voltage
across a particular synapse, but states of the entire network of neurons, or
causal connections to the external world, or even a radical version of the
extended mind hypothesis [Clark and Chalmers 1998]) can’t give rise to
hyperreal structure in the credences. This is why premise 1 appeals to a
description of the full physical world and a specification of the agent,
rather than just a physical description of the agent.

Now I will argue for premise 4. (This argument is given in the first
footnote of Kanovei and Shelah 2004.) There are various results due to
Robert Solovay and Hugh Woodin showing that, assuming the existence
of certain large cardinals, it is consistent with ZF (without the Axiom of
Choice) that there are no nonmeasurable sets of real numbers (Neeman
2010). However, given a nonstandard hyperreal number, one can define a
nonmeasurable set of real numbers.33 Thus, it is compatible with ZF set
theory that there are no functions that give a nonstandard hyperreal
output for any standard real-valued inputs. However, ZF together with
the Axiom of Choice does prove the existence of such functions. Thus,
the existence of such functions is independent of ZF, which (by premise
2) means that they are too complex to properly represent the physical

not suffice to save Regularity. If we consider the dartboard example again, then we can see
that an agent’s credence that the center of the dart hits precisely the center line of the
dartboard will have to be even smaller than any of the infinitesimals available from the
hyperreal structure used in physics. So we will need credences to have some even finer
hyperreal structure than the physics. And I suspect that a variant of this overall argument
will rule out this sort of mismatch between the physical hyperreals and the ones used for
credences.

32. If chances are themselves fundamental physical quantities, rather than them-
selves being realized by other fundamental physical quantities, then the existence of
hyperreal chances (as argued for by Hofweber [forthcoming]) could be enough for
there to be hyperreal credences. But as in footnote 4, this may not save Regularity.

33. One version of this proof is in Luxemburg 1973, 66–67. Another version is given
by Terence Tao at terrytao.wordpress.com/2008/10/14/non-measurable-sets-via-non-
standard-analysis/. The construction involved is actually very similar to the Bernstein
and Wattenberg construction of hyperreal probabilities—although the construction
gives every singleton a nonzero probability, it also shows that some more complex sets
can’t get any probability, real or hyperreal.
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manifestation of credences. Thus, the credences of physical agents in
ordinary propositions are not hyperreal.

This argument is in many ways just a sharpening of the argument
given in section 5 of Hájek 2003. Hájek makes the argument that infini-
tesimal probability assignments are “defective” because they are “ineffa-
ble.” That is, we have no way to pick out which infinitesimal is the one
assigned to any given proposition. My claim is the more specific one
that no physical facts could make one of these infinitesimals rather than
another be the credences of a particular agent. Although the Axiom
of Choice guarantees that such hyperreal-valued functions exist, and
although these functions are quite useful to talk about in mathematical
contexts, they have mathematical structure that goes beyond that of
credences.

None of this rules out a certain instrumental use of hyperreals. For
instance, as mentioned in note 6, Bartha and Hitchcock (1999) use hyper-
reals to describe a particular standard real-valued probability function.
In many cases, it may be more convenient for a theorist to describe cre-
dences by using a hyperreal-valued function than to use the set of possi-
bilities V, the algebra of propositions F , the probability function P, and a
conditional probability function. But the structure of the hyperreals goes
beyond the physical structure of credences, while ðV;F ;P Þ doesn’t seem
to. Thus, if we want our mathematical theory to faithfully represent the
structure of credences, as supposed by the arguments for Regularity, then
we should prefer the nonnumerical structure of the standard represen-
tation over the apparent convenience of the numerical structure of the
hyperreals.

6. Conclusion

I have shown that the arguments in favor of Regularity are all unsound.
The mathematical structure of probability theory (especially when sup-
plemented with a conditional probability function) involves several fea-
tures that can do the work that nonzero values are supposed to do in these
arguments. There is no need for betting behavior or comparative prob-
ability to be represented purely by individual numbers in the system.
Additionally, the particular numbers endorsed by Skyrms, Lewis, and
their followers (namely, the Robinson-style hyperreals) have too much
mathematical structure to represent anything about any physically pos-
sible agents. The advantage that the hyperreals have is that they are first-
order equivalent to the standard reals. However, they are so unlike the
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standard reals in terms of second-order logic (with the distinction
between internal and external sets) and set-theoretic complexity that
they can’t provide a faithful model of credences of the sort wanted by
defenders of Regularity. There are of course many other number systems
that are simpler than the hyperreals, which may be promising for this
purpose, and I canvass several such systems in the appendix. But the basic
point still stands—the mathematical structure surrounding the standard
real number representation of credence appears to provide an adequate
representation of credences, despite giving up Regularity. Any extension
of this system that is intended to save Regularity should avoid introducing
extra complexities like those of the hyperreals.

A. Appendix: Alternative Theories of Infinitesimals

Although this essay argues that Robinson-style hyperreals can’t be the
values of credences, there are several other frameworks that have been
proposed that can reasonably be called “infinitesimal probabilities.” It
may be that some of these systems do a better job of representing the
epistemic structure of credences than the version of the Kolmogorov
picture that I defend in the main text, and so they merit further study.
But the question of whether they save Regularity comes down to the
question of whether these are considered to be standard real numbers
with further mathematical structure, or whether the structure as a whole
constitutes a new number system. It seems to me that this is a relatively
empty terminological question, and thus research on these versions of
the theory should focus on the extent to which they do or don’t respect
the epistemology, and not on whether or not they happen to assign a
“number” that looks like 0 to a doxastically possible proposition.

A.1. Carnap

Carnap was already aware of the problem of minuscule propositions in
1960, before Robinson’s construction of the hyperreals.34 Since there was
at that time no known rigorous mathematics of infinitesimals, Carnap
sought to outline what such a theory ought to look like, in order for
infinitesimals to do the work he wanted for probability. The draft he
wrote eventually appeared posthumously as Carnap 1980.

34. I thank Branden Fitelson for pointing out to me the papers discussed in this
section.
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In this draft, Carnap posed four problems whose solution would
yield a notion of infinitesimal probabilities, together with partial solu-
tions to the first and third problems. The first problem is to lay down
axioms that can be used to characterize the relations explicating the
notion of one set of real numbers being smaller than another, and one
set being infinitely smaller than another. He proposed about twenty con-
ditions that these two relations should jointly satisfy and listed some the-
orems that follow from them. The second problem was to give an explicit
characterization of some relation on sets of real numbers that would
satisfy these axioms, which he was unable to do.

The third problem is to investigate the equivalence classes of sets
of real numbers under the “same size” relation characterized in the first
two problems. He carried out this project to the extent of showing that
these equivalence classes could be considered as themselves constituting
a number system that contained infinitesimals. The fourth problem is to
give an explicit characterization of this number system and a function
assigning values from this number system to sets of real numbers.

Given his partial characterizations, Carnap was able to give some
characterization of what the number system might look like. In particular,
just as in Robinson’s later system, there would be some infinite set of
infinitesimal numbers 1i, such that for any two of them, one would be
infinitely smaller than the other. However, unlike in Robinson’s system,
smaller infinitesimals would be “absorbed” into larger ones, so that if 11 is
infinitely smaller than 12, then 11þ 12 ¼ 12 and 11=12 ¼ 0, which in
Robinson’s system would happen only if 11 ¼ 0. This might have interest-
ing implications for the relation between conditional and unconditional
probability.

In the same volume where this draft was first published, Douglas
Hoover (1980) published a short note using Robinson’s system (in par-
ticular, with the construction given by Parikh and Parnes [1974]) to shed
some light on Carnap’s problems. In particular, he showed that the Par-
ikh and Parnes system satisfies all but two of Carnap’s axioms and that
those two axioms were inconsistent with the others in any case, so that
nothing better could be hoped for. However, the resulting number system
is the Robinson-style hyperreals, which (as mentioned above) behave
somewhat differently from the number system Carnap envisioned. A simi-
lar account that also uses the hyperreals is given by Benci, Horsten, and
Wenmackers (2013). But perhaps some other system satisfies those two
axioms while rejecting some others and behaves more like the system
Carnap hoped for.
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A.2. Lexicographic Probabilities

Another approach to minuscule propositions is the technique of “lexico-
graphic probabilities.” Versions of this approach appeared as early as
Kemeny 1955. Although Kemeny generally imposes the requirement of
“strict coherence” (his term for Regularity), on pages 270–72, he con-
siders what happens if this requirement is removed.

In his system, probabilities are assigned to sentences from some
finite language. He shows that if strict coherence is required, then the
probability functions are determined by assignments of nonzero num-
bers to the state descriptions (maximal consistent conjunctions of atomic
sentences and their negations), summing to 1. The conditional prob-
ability P ðajbÞ (Kemeny uses the notation “P(a, b)”) is then given by the
sum of the values on the state descriptions that make both a and b true,
divided by the sum of the values on the state descriptions that make b true.

If strict coherence is not required, the situation is a bit more inter-
esting. Instead of a single assignment of numbers to the state descrip-
tions, we need a sequence of such assignments, such that the values in each
individual assignment add up to 1, and such that every state description
gets a nonzero value on exactly one of the assignments. In this case,
the conditional probability P ðajbÞ is defined as before, except that the
values used in the calculation are the values given by the first assignment
in the sequence where some state description making b true has a non-
zero value.

This construction has since been generalized by others, including
van Fraassen (1995) and Halpern (2010). In the modern version, we
consider an arbitrary well-ordered sequence of probability functions,
with the requirement that every nonempty proposition get a nonzero
value in some function in the sequence. To update on a proposition,
one first removes from the sequence all functions that give this prop-
osition the value 0, and then applies standard conditionalization to all
remaining functions. At any point in time, only the first function in the
sequence represent’s the agent’s credences, with the others only serving
to encode information about conditional credences and updates.

Van Fraassen and Halpern both consider the relation between
these lexicographic probabilities and Popper’s functions with primitive
conditional probabilities. As suggested by Kemeny, Halpern shows that
there is a strong equivalence between Popper functions and these lexi-
cographic probabilities if we impose particular relations between the
assignments. That is, the countably additive lexicographic probabilities
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and the countably additive Popper functions can be paired up in such a
way that corresponding lexicographic probabilities and Popper functions
give exactly the same conditional probabilities to every pair of prop-
ositions. However, Halpern also shows (in examples 3.2 and 3.5) that if
we impose a somewhat stronger relation between different assignments
in the sequence, or give up on countable additivity, then there are Popper
functions to which no lexicographic probability corresponds.

Both authors also consider the relation between lexicographic
probabilities and probability functions that are allowed to take hyperreal
values. Van Fraassen, in appendix A4, cites McGee’s (1994) result show-
ing that there is a correspondence between Popper functions and hyper-
real probabilities and goes on to argue that the Popper functions (or
associated lexicographic probabilities) are superior to the hyperreal-
valued functions. In particular, he cites the fact that hyperreal values
are highly nonunique and that the lexicographic probabilities are much
easier to construct given a sequence of conditional probability values that
one wants to match.

Halpern shows that the relations between these three approaches
are somewhat more subtle. Although taking the “standard part” (the real
number closest to a given hyperreal) of every conditional probability in a
hyperreal-valued probability function gives a Popper function, and every
Popper function arises in this way, Halpern shows that on a natural way of
interpreting decision theory in these two frameworks, the corresponding
functions give rise to different preferences among gambles. As Halpern
shows in his example 5.3, an agent who has credence 1/2 þ 1 in p and
1/2 2 1 in :p will prefer a payoff conditional on p to the same payoff
conditional on :p, but will disprefer it to any larger payoff conditional on
:p. Since there is no Popper function with this behavior, the Popper
function corresponding to this hyperreal-valued probability function
fails to properly represent it.

As it turns out, the correspondence between lexicographic prob-
abilities and hyperreal-valued probability functions doesn’t have this
problem—but as mentioned above, in infinite probability spaces where
countable additivity isn’t required, the correspondence is only one way.
There are hyperreal-valued probability functions that are not rep-
resented by any lexicographic probability.

Thus, Popper functions, lexicographic probabilities, and hyper-
real-valued probability functions are very similar in behavior (much more
similar than Carnap’s proposal is to any of them), but there are still
important differences. In particular, hyperreal values allow far more
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fine-grained distinctions than either of these other options. Additionally,
since Popper functions and lexicographic probabilities are both defin-
able in very constructive ways, the arguments I give in section 5 against
hyperreals don’t cause problems for Popper functions or lexicographic
probabilities.

Whether these lexicographic probabilities really represent “infini-
tesimal credences” or count as a way to satisfy Regularity seem to be
primarily terminological questions. We can say that a proposition is minus-
cule if it gets the value 0 from the first function in the sequence and say
that its credence is “infinitesimal” if it gets a nonzero value from some
later function in the sequence. But we might also just identify credences
with the value assigned by the first function in the sequence, which would
interpret these lexicographic probabilities as violating Regularity.

A.3. Further Mathematical Theories of Infinitesimals That Could Be Applied

There are also some other mathematical theories of infinitesimals that
could be used in place of Robinson’s hyperreals. For instance, one could
use the theory of “surreal numbers” developed by John Conway, or the
techniques of “smooth infinitesimal analysis” based on the ideas of Wil-
liam Lawvere. (See Conway 1976 for the former and Bell 1998 for the
latter.) Smooth infinitesimal analysis doesn’t seem like an especially
promising formalism since it treats infinitesimals as more like “infinitely
small line segments” rather than as points on a number line, and it
requires intuitionist logic instead of classical logic. The surreal numbers
seem more promising as a device for future philosophers of probability to
use. Their construction is a simultaneous generalization of Dedekind’s
construction of the real numbers and von Neumann’s construction of the
ordinals and can be carried out in a very weak set theory. As it turns out, we
can name particular surreal infinitesimals, like 1/v and 22v. However, the
use of surreal numbers for probability values will have to be substantially
different from the way Skyrms and Lewis recommend using hyperreals
because the technique they take from Bernstein and Wattenberg (1969)
leads directly to the construction of nonmeasurable sets, and thus goes
beyond ZF in some substantial way. Additionally, the defender of surreal
probabilities will need to address the worries raised by Williamson’s argu-
ment about linearly ordered comparative probabilities. It would be inter-
esting to see whether the use of surreal numbers could get around these
worries, but the eventual theory will have to look substantially different
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from the one that Skyrms and Lewis proposed and other philosophers
have uncritically adopted.
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