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Hempel first introduced the paradox of confirmation in 1937. Since then, a very
extensive literature on the paradox has evolved (Vranas 2004). Much of this
literature can be seen as responding to Hempel’s subsequent discussions and
analyses of the paradox (Hempel 1945). Recently, it was noted that Hempel’s
intuitive (and plausible) resolution of the paradox was inconsistent with his
official theory of confirmation (Fitelson and Hawthorne 2006). In this article, we
will try to explain how this inconsistency affects the historical dialectic about the
paradox and how it illuminates the nature of confirmation. In the end, we will
argue that Hempel’s intuitions about the paradox of confirmation were (basically)
correct, and that it is his theory that should be rejected, in favor of a (broadly)

 

Bayesian account of confirmation.

 

1. The Original Formulation of the Paradox

 

Informally and pre-theoretically, confirmation is a relation of “support”
between statements or propositions. So, when we say that 

 

p

 

 confirms 

 

q

 

,
what we mean (roughly and intuitively) is that the truth of 

 

p

 

 provides
(

 

some

 

 degree of ) support

 

2

 

 for the truth of 

 

q

 

. These are called 

 

qualitative

 

confirmation claims. And, when we say that 

 

p

 

 confirms 

 

q

 

 more strongly
than 

 

p

 

 confirms 

 

r

 

, we mean (roughly and intuitively) that the truth of 

 

p

 

provides 

 

better

 

 support for the truth of 

 

q

 

 than it does for the truth of 

 

r

 

.
These are called 

 

comparative

 

 confirmation claims. Confirmation 

 

theory

 

aims to provide formal explications of both the qualitative and com-
parative informal “support” concepts involved in such claims. The
paradox of confirmation is a paradox involving the qualitative relation of
confirmation, but some of its contemporary resolutions appeal also to the
comparative concept. We begin with the original formulation of the
paradox.

Traditionally, the Paradox of Confirmation (as introduced in Hempel
1937) is based on the following two assumptions about the qualitative
confirmation relation:

 

• Nicod Condition (NC)

 

: For any object 

 

a

 

 and any properties 

 

F

 

 and 

 

G

 

,
the proposition that 

 

a

 

 has both 

 

F

 

 and 

 

G

 

 confirms the proposition that
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every 

 

F

 

 has 

 

G

 

. A more formal version of (NC) is the following claim
expressed in monadic predicate-logical symbolism:

 

For any individual term ‘

 

a

 

’ and any pair of predicates ‘

 

F

 

’ and ‘

 

G

 

’
(

 

Fa

 

 · 

 

Ga

 

) confirms (

 

∀

 

x

 

)(

 

Fx

 

 

 

⊃

 

 

 

Gx

 

).

 

In slogan form, (NC) might be expressed as “universal claims are confirmed
by their positive instances.” It is called the Nicod Condition because it was
first endorsed by Nicod (1970). We will say much more about (NC) below.

 

• Equivalence Condition (EC)

 

: For any propositions 

 

H

 

1

 

, 

 

H

 

2

 

, and 

 

E

 

, if 

 

E

 

confirms 

 

H

 

1

 

 and 

 

H

 

1

 

 is (classically) logically equivalent to 

 

H

 

2

 

, then 

 

E

 

confirms 

 

H

 

2

 

.

The intuition behind (EC) is that if 

 

H

 

1

 

 and 

 

H

 

2

 

 are (classically) logically
equivalent, then they make exactly the same predictions (indeed, they 

 

say
the same thing

 

), and so anything that counts as evidence for 

 

H

 

1

 

 should also
count as evidence for 

 

H

 

2

 

.

 

3

 

 From (NC) and (EC), we can deduce the
following, “paradoxical conclusion”:

 

• Paradoxical Conclusion (PC)

 

: The proposition that 

 

a

 

 is both non-
black and a non-raven, (

 

∼

 

Ba

 

 · 

 

∼

 

Ra

 

), confirms the proposition that every
raven is black, (

 

∀

 

x

 

)(Rx ⊃ Bx).

The canonical derivation of (PC) from (EC) and (NC) proceeds as follows:

1. By (NC), (∼Ba · ∼Ra) confirms (∀x)(∼Bx ⊃ ∼Rx).
2. In classical logic, (∀x)(∼Bx ⊃ ∼Rx) is equivalent to (∀x)(Rx ⊃ Bx).
3. By (1), (2), and (EC), (∼Ba · ∼Ra) confirms (∀x)(Rx ⊃ Bx). QED.

The earliest analyses of this infamous paradox were offered by Hempel,
Goodman, and Quine. Next, we will discuss how each of these philoso-
phers attempted to resolve the paradox.

2. Early Analyses of the Paradox due to Hempel, Goodman, and Quine

2.1 The Analyses of Hempel and Goodman

Hempel (1945) and Goodman (1954) didn’t view (PC) as paradoxical.
Indeed, Hempel and Goodman viewed the argument above from (1) and
(2) to (PC) as sound. So, as far as Hempel and Goodman are concerned,
there is something misguided about whatever intuitions may have lead
some philosophers to see “paradox” here. As Hempel explains (Goodman’s
discussion is very similar on this score), one might be misled into thinking
that (PC) is false by conflating (PC) with a different claim – a claim that
is clearly false. Hempel warns us that [our emphasis]
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in the seemingly paradoxical cases of confirmation, we are often not judging
the relation of the given evidence E alone to the hypothesis H . . . instead, we
tacitly introduce a comparison of H with a body of evidence which consists
of E in conjunction with an additional amount of information we happen to
have at our disposal.

More precisely, Hempel is warning us here not to conflate the following
two claims:

• (PC) If one observes that an object a – about which nothing is antecedently
known – is a non-black non-raven, then this observation confirms that all
ravens are black.

• (PC*) If one observes that an object a – which is already known to be a non-raven
– is non-black (hence, is a non-black non-raven), then this observation
confirms that all ravens are black.

The distinction Hempel draws here is a crucial one, and it indicates that
confirmation is really a three-place relation, between evidence (E ), hypothesis
(H ), and a background corpus (K ). This allows us to be a bit more precise
still about Hempel’s warning. The warning is not to conflate:

• (PC) (∼Ba · ∼Ra) confirms (∀x)(Rx ⊃ Bx), relative to tautological back-
ground KT.

• (PC*) (∼Ba · ∼Ra) confirms (∀x)(Rx ⊃ Bx), relative to background ∼Ra.

Intuitively, it is pretty clear that (PC*) is false. After all, it seems clear that
observing a (known) non-raven cannot tell us anything about the color of ravens.
Or, to put things another way, if we already know that a is a non-raven,
then we already know that a is neither a positive instance of nor a
counterexample to the claim that all ravens are black. As such, observing
its color does not (intuitively) provide any information relevant to
whether or not all ravens are black. On the other hand, it is not at all
clear that (PC) is false. If we know nothing about a, and then we observe
it to be a non-black non-raven, this (intuitively) can tell us something
relevant to whether or not all ravens are black, because such an observa-
tion can serve to reduce the number of (possible) counterexamples to the claim
that all ravens are black. As such, this observation may well provide
information that is relevant to whether or not all ravens are black (see
Maher 1999 for a clear articulation of this line of argument). Hempel and
Goodman provided an “independent argument” for (PC), which ran as
follows:

If the evidence E consists only of one object which . . . is a non-raven [∼Ra],
then E may reasonably be said to confirm that all objects are non-ravens [(∀x)
∼Rx], and a fortiori, E supports the weaker assertion that all non-black
objects are non-ravens [(∀x)(∼Bx ⊃ ∼Rx)], i.e., that all ravens are black [(∀x)
(Rx ⊃ Bx)].
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This alternative argument for (PC) rests on four assumptions:

• A Slight Modification of the Nicod Condition (NC*): Hempel’s
first premise here is that “∼Ra confirms (∀x) ∼Rx”. This assumes a general
principle that is close to (NC), since ∼Ra is equivalent to Ta · ∼Ra, where
Tx is any predicate that tautologically applies to all objects (e.g., Tx =
Rx ∨ ∼Rx), and (∀x) ∼Rx is equivalent to (∀x)(Tx ⊃ ∼Rx). If one
already accepts (NC) and (EC), then (NC*) should also be acceptable.

• Monotonicity (M): If E confirms H, then E · X confirms H, for any X.
This (or something akin to it – see note 4) is presupposed implicitly in
the first step of the argument, which takes us from “∼Ra confirms (∀x)
∼Rx” to “∼Ra · ∼Ba confirms (∀x) ∼Rx.” As we will see below, assump-
tion (M) – which is implied by Hempel’s theory of confirmation – is
rejected by contemporary confirmation theorists. We will also see that (M)
is inconsistent with the (intuitive) Hempel-Goodman resolution of the
paradox.

• Special Consequence Condition (SCC): For all propositions H1, H2,
and E, if E confirms H1, and H1 (classically) logically entails H2, then E
confirms H2. This (or something akin to it) is assumed in the second step
of the argument, which takes us from “∼Ra · ∼Ba confirms (∀x) ∼Rx” to
“∼Ra · ∼Ba confirms (∀x)(∼Bx ⊃ ∼Rx)”. (SCC) is another assumption
which is implied by Hempel’s theory of confirmation, but which is
rejected by most contemporary confirmation theorists (see below).

• The Equivalence Condition (EC): This is assumed at the very end of
the argument, which takes us from “∼Ra · ∼Ba confirms (∀x)(∼Bx ⊃ ∼Rx)”
to “∼Ra · ∼Ba confirms (∀x) (Rx ⊃ Bx)”.

We mention this “independent argument” for (PC) not because it is more
compelling than the original argument generating the paradox, but
because it exposes several other key assumptions that Hempel and Good-
man made about confirmation. These will become crucial, below.

Let’s return now to (PC) vs (PC*). Even if you don’t think that (PC)
is clearly true, it should nonetheless be clear that (PC*) is false. Thus,
Hempel and Goodman’s explanation of the appearance of paradoxicality
here – that it arises by conflating (PC) and (PC*) – is quite plausible and
intuitive. Unfortunately, it is difficult to see how this resolution could be
available to them, since it contradicts their theory of confirmation! This is
because their theory of confirmation implies (M). To see why, note that
Hempel and Goodman theoretically explicate “E confirms H relative to
K” as “E · K entails Z”, where Z is a proposition obtained from the
syntax of H and E in a certain complex way, which Hempel (1943, 1945)
specifies (the technical details of Hempel’s theory of confirmation won’t
matter for present purposes). Of course, if E by itself (i.e., E · T for
tautological T) entails Z, then so does E · X, for any X. As a result, in
Hempel’s confirmation theory, “E confirms H, relative to KT” implies
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“E · X confirms H, relative to KT”, for any proposition X. Thus, Hempel’s
theory implies (M).4 Therefore, according to Hempel’s theory of confir-
mation, if (PC) is true, then (PC*) must also be true. So, the intuitive
suggestion made by Hempel and Goodman – that (PC) is true while
(PC*) is false – is logically incompatible with their theory of confirmation. As far
as we know, this logical inconsistency in Hempel and Goodman’s discus-
sions of the paradox of confirmation was not noted in the literature prior
to (Fitelson and Hawthorne 2006). As we will see below, this inconsist-
ency has some rather important consequences for the ensuing historical
dialectic. Before tracing this subtle historical trajectory, we pause to con-
sider Quine’s radically different approach to the paradox of confirmation.

2.2 Quine on the Paradox of the Ravens

In his influential paper “Natural Kinds,” Quine (1969) offers an analysis
of the paradox of confirmation that deviates radically from the Hempel-
Goodman (intuitive) line. Unlike Hempel and Goodman, Quine rejects
the paradoxical conclusion (PC). Since Quine accepts classical logic, this
forces him to reject either premise (1) or premise (2) of the (classically
valid) canonical argument for (PC). Since Quine also accepts the (classi-
cal) equivalence condition (EC), he must accept premise (2). Thus, he is
led, inevitably, to the rejection of premise (1). This means he must reject
(NC) – and he does so. Indeed, according to Quine, not only does (∼Ba
· ∼Ra) fail to confirm (∀x)(∼Bx ⊃ ∼Rx), but also ∼Ra fails to confirm (∀x)
∼Rx. According to Quine, the failure of instantial confirmation in these
cases stems from the fact that the predicates “non-black” [∼B] and “non-
raven” [∼R] are not natural kinds – i.e., the objects falling under ∼B and
∼R are not “sufficiently similar” to undergird instantial confirmation of
universal laws involving ∼B or ∼R. Quine’s suggestion is that only laws
involving natural kinds will be confirmed by their positive instances. Thus,
for Quine, (NC) is the source of the problem here. He suggests that
the unrestricted version (NC) is false, and must be replaced by a restricted
version that applies only to natural kinds:

Quine–Nicod Condition (QNC): For any object a and any natural kinds F
and G, the proposition that a has both F and G confirms the proposition that
every F has G. More formally, (Fa · Ga) confirms (∀x)(Fx ⊃ Gx), for any
individual term a, provided that the predicates ‘F ’ and ‘G’ refer to natural kinds.

To summarize, Quine thinks (PC) is false, and that the (valid) canonical
argument for (PC) is unsound because (NC) is false. Furthermore,
according to Quine, once (NC) is restricted in scope to natural kinds, the
resulting restricted instantial confirmation principle (QNC) is true, but
useless for deducing (PC).5 Many contemporary commentators have taken
the problems with (NC) to be much deeper than Quine seems to think
(as we’ll soon see). The real problems with (NC) and (QNC) only
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become clear when the paradox is cast in more precise Bayesian terms, in
a way that will be explicated in the next part of this article. But, first, we
will show how the Bayesian framework allows us to clarify the paradox
and the historical debates surrounding it.

3. Contemporary Bayesian Clarifications of (NC) and (PC)

As we saw above, Hempel (1945) provided a cautionary remark about the
paradox. He warned us not to conflate the paradoxical conclusion (PC)
with a distinct (intuitively) false conclusion (PC*) that (intuitively) does
not follow from (NC) and (EC). It is clear that Hempel was onto some-
thing important with his intuitive distinction between claims (PC) and
(PC*), but (as we saw above) his confirmation theory just lacked the
resources to properly spell out his intuitions. This is where contemporary
Bayesian confirmation theory really comes in handy.

In contrast to Hempelian confirmation theory (or, for that matter,
other deductive theories of confirmation like hypothetico-deductivism),
according to Bayesian confirmation theory, ‘E confirms H, given K ’, and
‘(E · K ) confirms H, unconditionally’ have quite different meanings. Essen-
tially, this is possible because Bayesian explications of the confirmation
relation do not entail monotonicity (M). Specifically, contemporary Bayesians
offer the following account of conditional and unconditional confirmation
– where hereafter, we will use the words “confirms” and “confirmation”
in accordance with this Bayesian account:

• Bayesian Confirmation. E confirms H, given K (or relative to K ), just in
case P[H | E · K ] > P[H | K ]. And, E confirms H, unconditionally, iff P[H
| E ] > P[H ], where P[•] is some suitable probability function.6

It is easy to see, on this account of (conditional and unconditional)
confirmation, that there will be a natural distinction between (PC) and
(PC*). From a Bayesian point of view this distinction becomes:

(PC) P [(∀x)(Rx ⊃ Bx) | ∼Ba·∼Ra] > P[(∀x)(Rx ⊃ Bx)], vs
(PC*) P [(∀x)(Rx ⊃ Bx) | ∼Ba·∼Ra] > P[(∀x)(Rx ⊃ Bx) | ∼Ra]

Charitably, this is the sort of distinction Hempel had in mind when he
articulated his intuitions about the paradox. And, we think this is crucial
for understanding the ensuing historical dialectic regarding the paradox.
The important point here is that Bayesian confirmation theory has the
theoretical resources to distinguish conditional and unconditional confir-
mation, but traditional (classical) deductive accounts (like Hempel’s theory
and H–D) do not. As a result, Bayesian theory allows us to precisely articulate
Hempel’s intuition concerning why people might (falsely) believe that the
paradoxical conclusion (PC) is false by conflating it with (PC*).
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A key insight of Bayesian confirmation theory is that it represents
confirmation as an irreducibly three-place relation between evidence E,
hypothesis H, and background corpus K. From this perspective the traditional
formulation of the paradox is imprecise in an important respect: it leaves
unclear which background corpus is presupposed in the (NC) – and, as a result,
also in the (PC). In other words, there is a missing quantifier in the traditional
formulations of (NC) and (PC). Here are four possible precisifications of
(NC) [the corresponding precisifications of (PC) should be obvious]:

• (NCw) For any individual term ‘a’ and any pair of predicates ‘F ’ and ‘G ’,
there is some possible background K such that (Fa · Ga) confirms (∀x)(Fx
⊃ Gx), given K.

• (NCα) Relative to our actual background corpus Kα, for any individual
term ‘a’ and any pair of predicates ‘F ’ and ‘G ’, (Fa · Ga) confirms (∀x)(Fx
⊃ Gx), given Kα.

• (NCT) Relative to tautological (or a priori) background corpus KT, for any
individual term ‘a’ and any pair of predicates ‘F ’ and ‘G ’, (Fa · Ga)
confirms (∀x)(Fx ⊃ Gx), given KT.

• (NCs) Relative to any possible background corpus K, for any individual
term ‘a’ and any pair of predicates ‘F ’ and ‘G ’, (Fa · Ga) confirms (∀x)(Fx
⊃ Gx), given K.

Which rendition of (NC) is the one Hempel and Goodman had in mind?
Well, (NCw) seems too weak to be of much use. There is bound to be some
corpus with respect to which non-black non-ravens confirm ‘All non-
black things are non-ravens’, but this corpus may not be very interesting
(e.g., the corpus which contains ‘(∼Ba · ∼Ra) ⊃ (∀x)(∼Bx ⊃ ∼Rx)’!).

What about (NCα)? Well, that depends. If we happen to (actually)
already know that ∼Ra, then all bets are off as to whether ∼Ba confirms
(∀x)(∼Bx ⊃ ∼Rx), relative to Kα (as Hempel 1945 suggests, and
Maher 1999, 2004 makes precise). So, only a suitably restricted version
of (NCα) would satisfy Hempel’s constraint. (We’ll return to this issue,
below.)

How about (NCs)? This rendition is clearly too strong. As we’ll soon see,
I. J. Good demonstrated that (NCs) is false in a Bayesian framework.

What about (NCT)? As Maher (1999, 2004) skillfully explains, Hempel
and Goodman (and Quine) have something much closer to (NCT) in
mind. Originally, the question was whether learning only (∼Ba · ∼Ra) and
nothing else confirms that all ravens are black. And, it seems natural to
understand this in terms of confirmation relative to “tautological (or a
priori) background.” We will return to the notion of “tautological confir-
mation,” and the (NCα) vs (NCT) controversy, below. But, first, it is useful
to discuss I. J. Good’s knock-down counterexample to (NCs), and his later
(rather humorous but also insightful) attempt to formulate a counterex-
ample to (NCT).
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4. Good’s Counterexample to (NCs) and his “Counterexample” to (NCT)

Good (1967) asks us to consider the following example (we’re paraphrasing
here):

• Our background corpus K says that exactly one of the following hypotheses
is true: (H ) there are 100 black ravens, no non-black ravens, and 1 million
other birds, or else (∼H ) there are 1,000 black ravens, 1 white raven, and
1 million other birds. And K also states that an object a is selected at
random from all the birds. Given this background K,

Hence, Good has described a background corpus K relative to which (Ra ·
Ba) disconfirms (∀x)(Rx ⊃ Bx). This is sufficient to show that (NCs) is false.

Hempel (1967) responded to Good by claiming that (NCs) is not what
he had in mind, since it smuggles too much “unkosher” (a posteriori)
empirical knowledge into K. Hempel’s challenge to Good was (again,
charitably) to find a counterexample to (NCT). However, In light of the
inconsistency in Hempel’s own thinking about the paradox, it is unclear
how we should (now) understand his challenge to Good. On its face,
Hempel’s challenge seems too strong, since all Hempel (1945) says is that
antecedently knowing ∼Ra undermines the confirmation ∼Ra · ∼Ba pro-
vides for (∀x)(Rx ⊃ Bx). He does not say that statistical information about
the distribution of colors and species of objects in the universe will undermine
this confirmation relation. As such, it seems that Good should have
responded by (a) pointing out that Hempel’s theory of confirmation con-
tradicts his own caveat about empirical background knowledge; and (b) even
if we bracket that inconsistency, Hempel’s caveat does not seem to rule-
out the kinds of statistical background information Good presupposes in
his counterexample to (NCs). Be that as it may, Good (1968) did respond
to Hempel’s challenge by attempting to furnish a counterexample to
(NCT). Here is what he said [our brackets]:

imagine an infinitely intelligent newborn baby having built-in neural circuits
enabling him to deal with formal logic, English syntax, and subjective proba-
bility. He might now argue, after defining a [raven] in detail, that it is initially
extremely unlikely that there are any [ravens], and therefore that it is extremely
likely that all [ravens] are black. . . . On the other hand, if there are [ravens],
then there is a reasonable chance that they are a variety of colours. Therefore,
if we were to discover that even a black [raven] exists we would consider
[(∀x)(Rx ⊃ Bx)] to be less probable than it was initially.

This “counterexample” to (NCT) is far from conclusive, as stated [see
Maher (1999) for a trenchant analysis of this passage]. Ultimately, the

P

P

[ |( )( ) ]

    [ |~( )( ) ]

Ra Ba x Rx Bx K

Ra Ba x Rx Bx K

⋅ ∀ ⊃ ⋅
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problem here is that in order to give a rigorous and compelling coun-
terexample to (NCT), one needs a theory of “tautological confirmation” –
i.e., of “confirmation relative to tautological background”. Good doesn’t
have such a theory (nor do most contemporary probabilists), which
explains the lack of rigor and persuasiveness of “Good’s Baby.” However,
Patrick Maher does have such an account; and he has applied it in his
recent, neo-Carnapian, Bayesian analysis of the paradox of the ravens.

5. Maher’s Neo-Carnapian Analysis of the Ravens Paradox

Carnap (1950, 1952, 1971, 1980) proposed various theories of “tautolog-
ical confirmation” in terms of “logical probability”. Recently Patrick
Maher (1999, 2004) has brought a Carnapian approach to bear on the
ravens paradox, with some very enlightening results. For our purposes it
is useful to emphasize two consequences of Maher’s neo-Carnapian,
Bayesian analysis of the paradox. First, Maher shows that (PC*) is false on
a neo-Carnapian theory of (Bayesian) confirmation. That is, if we take a
suitable class of Carnapian logical (or a priori) probability functions Pc[• |
•] – e.g., either those of Maher (1999) or Maher (2004) – as our “prob-
abilities relative to tautological background”, then we get the following
result (see Maher (1999))

Pc[(∀x)(Rx ⊃ Bx)|∼Ba · ∼Ra] = Pc[(∀x)(Rx ⊃ Bx)|∼Ra]

Intuitively, this says that observing the color of (known) non-ravens tells
us nothing about the color of ravens, relative to tautological background
corpus. This is a theoretical vindication of Hempel’s intuitive claim that
(PC*) is false – a vindication that is difficult (impossible, given what
Hempel says about (PC)) to make out in Hempel’s deductive theory of
confirmation. But, all is not beer and skittles for such a Bayesian recon-
struction of Hempel’s intuitions about the paradox.

More recently, Maher (2004) has convincingly argued (contrary to
what he had previously suggested (1999)) that, within a proper neo-
Carnapian Bayesian framework, Hempel’s (NCT) is false, and so is its
Quinean “restriction” (QNCT). That is, Maher (2004) has shown that
(from a Carnapian/Bayesian point of view) pace Hempel, Goodman, and
Quine, even relative to tautological background, positive instances do not neces-
sarily confirm universal generalizations – not even for generalizations that involve
only natural kinds! The technical details of Maher’s counterexample to
(QNCT) [hence, to (NCT) as well] would take us too far afield.7 But, we
mention it here because it shows that probabilistic approaches to confir-
mation are much richer and more powerful than traditional, deductive
approaches. And, we think, Maher’s work finally answers Hempel’s
challenge to Good – a challenge that went unanswered for nearly forty
years.
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Moreover, Maher’s results also suggest that Quine’s analysis in “Natural
Kinds” was off the mark. Contrary to what Quine suggests, the problem with
(NC) is not merely that it needs to be restricted in scope to certain kinds of
properties. The problems with (NC) run much deeper than that. Even the
most promising Hempelian precisification of (NC) is false, and a restriction
to “natural kinds” does not help, since Maher-style, neo-Carnapian counterex-
amples can be generated employing only “natural kinds” in Quine’s sense.8

While Maher’s neo-Carnapian analysis is quite illuminating, it is by no
means in the mainstream of the contemporary Bayesian literature. Most
contemporary Bayesians reject the Carnapian approach to logical proba-
bilities and the Carnapian assumption that there is any such thing as
“degree of confirmation relative to tautological background.” Because
contemporary Bayesians have largely rejected this Carnapian project, they
take a rather different tack to handle the paradox of confirmation.

6. The Canonical Contemporary Bayesian Approaches to the Paradox

Perhaps somewhat surprisingly, almost all contemporary Bayesians implic-
itly assume that the paradoxical conclusion is true. And, they aim only to
“soften the impact” of (PC) by trying to establish certain comparative and/
or quantitative confirmational claims. Specifically, Bayesians typically aim
to show (at least) that the observation of a black raven, (Ba · Ra), confirms
that all ravens are black more strongly than the observation of a non-black
non-raven, (∼Ba · ∼Ra) does, relative to our actual background corpus Kα,
which is assumed to contain no “unkosher” information about a in par-
ticular (although it will contain statistical information reflecting our beliefs
about the distributions of things in the actual world, and so it will not be
tautological ). Specifically, most contemporary Bayesians aim to show (at
least) that relative to some measure c of how strongly evidence supports a
hypothesis, the following COMParative claim holds:9

(COMPc) c[(∀x)(Rx ⊃ Bx), (Ra · Ba)|Kα] > c[(∀x)(Rx ⊃ Bx), (∼Ba · ∼Ra)|Kα].

Here c(H, E | K ) is some Bayesian measure of the degree to which E
confirms H, relative to background corpus K. Note: unlike Carnap, most
contemporary Bayesians do not think there is any such thing as logical
(or a priori ) probability Pc[• | KT]. So, for most contemporary Bayesians,
the salient probability is P[p | Kα], which is to be interpreted as the
rational epistemic probability of p, given an (actual) background knowl-
edge corpus Kα (which is not tautological). The typical Bayesian strategy
is to isolate constraints on Kα that are as minimal as possible (hopefully,
even ones that Hempel would have seen as kosher), so as to guarantee
that (COMPc) obtains, with respect to P[• | Kα].

As it stands, (COMPc) is somewhat unclear. There are many Bayesian
relevance measures c that have been proposed and defended in the
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contemporary literature on Bayesian confirmation. The four most popular
of these measures are the following (see Fitelson (1999) and Fitelson (2001)
for historical surveys).10

• The Difference: d[H, E | K ] = P[H | E · K ] − P[H | K ]
• The Log-Ratio: r[H, E | K ] = log(P[H | E · K ] / P[H | K ])
• The Log-Likelihood-Ratio: l[H, E|K ] = log(P[E|H · K ] / P[E|∼H · K ])
• The Normalized Difference: s[H, E | K ] = P[H | E · K ] − P[H | ∼E · K ]

Measures d, r, and l all satisfy the following desideratum, for all H, E1, E2,
and K:

(†) If  P[H | E1 · K] > P[H | E2 · K], then c[H, E1 | K] > c[H, E2 | K].

But, interestingly, measure s does not satisfy (†). So, if one uses either d,
r, or l to measure confirmation, then one can establish the desired
comparative claim simply by demonstrating that:

(COMPP) P[(∀x)(Rx ⊃ Bx)|Ra · Ba · Kα] > P[(∀x)(Rx ⊃ Bx)|∼Ba · ∼Ra · Kα]

On the other hand, if one uses s, then one has a bit more work to do to
establish the desired comparative conclusion, because (COMPP) does not
entail (COMPs).

11

Some Bayesians go farther than this by trying to establish not only the
comparative claim (COMPc), but also the quantitative claim that the obser-
vation of a non-black non-raven confirms that “All ravens are black” to
a “minute” degree. That is, in addition to the comparative claim, some
Bayesians also go for the following QUANTative claim:

(QUANTc) c[(∀x)(Rx ⊃ Bx), (∼Ba · ∼Ra) | Kα] > 0, but very nearly 0.

Let’s begin by discussing the canonical contemporary Bayesian comparative
analysis of the paradox. In essence, almost all such accounts trade on the
following three assumptions about Kα, where it is assumed that the object
a is sampled at random from the universe:12

(1) P[∼Ba | Kα] > P[Ra | Kα]

(2) P[Ra | (∀x)(Rx ⊃ Bx) · Kα] = P[Ra | Kα]

(3) P[∼Ba | (∀x)(Rx ⊃ Bx) · Kα] = P[∼Ba | Kα]

Basically, assumption (1) relies on our knowledge that (according to Kα)
there are more non-black objects in the universe than there are ravens.
This seems like a very plausible distributional constraint on Kα, since – as



106 The Paradox of Confirmation

© Blackwell Publishing 2006 Philosophy Compass 1/1 (2006): 95–113, 10.1111/j.1747-9991.2006.00011.x

far as we actually know – it is true. Assumptions (2) and (3) are more
controversial. We will say more about them shortly. First, we note an
important and pretty well-known theorem (see Vranas 2004 for a proof ).

THEOREM. (1)–(3) jointly entail (COMPP). [Therefore, since d, r, and l each
satisfy (†), it follows that (1)–(3) entail (COMPd), (COMPr), and (COMPl).]

In fact, (1)–(3) entail much more than (COMPP), as the following theorem
illustrates:

THEOREM. (1)–(3) also entail the following:

(4) P[(∀x)(Rx ⊃ Bx) | ∼Ba · ∼Ra · Kα] > P[(∀x)(Rx ⊃ Bx) | Kα]

(5) s[(∀x)(Rx ⊃ Bx), (Ra · Ba) | Kα] > s[(∀x)(Rx ⊃ Bx), (∼Ba · ∼Ra) | Kα]

In other words, (4) tells us that assumptions (1)–(3) entail that the obser-
vation of a non-black non-raven confirms that all ravens are black – i.e.,
that the paradoxical conclusion (PC) is true. And, (5) tells us that even
according to s (a measure that violates (†)) the observation of a black raven
confirms that all ravens are black more strongly than the observation of a
non-black non-ravens does.

The fact that (1)–(3) entail (4) and (5) indicates that the canonical
Bayesian assumptions go far beyond the comparative claim most Bayesians
want. Why, for instance, should a Bayesian be committed to the qualitative
paradoxical conclusion (PC)? After all, as Patrick Maher and I. J. Good
have made so clear, probabilists don’t have to be committed to qualitative
claims like (NC) and (PC). It would be nice if there were assumptions
weaker than (1)–(3) that sufficed to establish ( just) the comparative claim
(COMPP), while implying no commitment to qualitative claims like (PC).
Happily, there are such weaker conditions. But, before we turn to them,
we first need to briefly discuss the quantitative Bayesian approaches.

Various Bayesians go farther than (COMPc) in their analysis of the ravens
paradox. They seek to identify (stronger) constraints, stronger background
knowledge Kα, that entails both (COMPc) and (QUANTc). The most com-
mon strategy along these lines is simply to strengthen (1), as follows:

(1′) P[∼Ba | Kα] >> P[Ra | Kα] − i.e., there are far fewer ravens than non-
black things in the universe.

Recently, Peter Vranas (2004) has provided a very detailed analysis of
quantitative Bayesian approaches to the ravens paradox along these lines.
We won’t dwell too much on the details of these approaches. Vranas does
an excellent job of analyzing them. However, some brief remarks on a
result Vranas proves and uses in his analysis are worth considering here.

Vranas shows that assumptions (1′) and (3) (without (2)) are sufficient
for (QUANTc) to hold (i.e. for (∀x)(Rx ⊃ Bx) to be positively confirmed
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by (∼Ba · ∼Ra), given Kα, but only by a very small amount) for all four
measures of confirmation d, r, l, and s. Moreover, he argues that in the
presence of (1′), (3) is “approximately necessary” for (QUANTc). What he
proves is that, given (1′), and supposing that P[H | Kα] is not too small,
the following approximate claim is necessary for (QUANTc):

(3′) P[∼Ba | (∀x)(Rx ⊃ Bx) · Kα] ≈ P[∼Ba | Kα].

Vranas then argues that Bayesians have given no good reason for this
necessary (and sufficient) condition. Thus, he concludes, Bayesian resolu-
tions of the paradox that claim non-black non-ravens confirm by a tiny
bit, due to assumption (1′), have failed to establish a condition they must
employ to establish this claim – they have failed to establish (3′).13

Vranas’s claim that (3) is “approximately necessary” for (QUANTc) may
be somewhat misleading. It makes it sound as if (3) has a certain property.
But, in fact, nothing about (3) itself follows from Vranas’s results. It is more
accurate to say (as Bob Dylan might) that “approximately (3)” [i.e., (3′)]
is necessary for (QUANTc). To see the point, note that (3) is a rather strong
independence assumption, which entails many other identities, including:

(3.1) P[(∀x)(Rx ⊃ Bx) | Ba · Kα] = P[(∀x)(Rx ⊃ Bx) | Kα], and

(3.2) P[(∀x)(Rx ⊃ Bx) | Ba · Kα] = P[(∀x)(Rx ⊃ Bx) | ∼Ba · Kα]

But, (3′) is not an independence assumption. Indeed, (3′) is far weaker than
an independence assumption, and it does not entail the parallel approximates:

(3′.1) P[(∀x)(Rx ⊃ Bx) | Ba · Kα] ≈ P[(∀x)(Rx ⊃ Bx) | Kα], or

(3′.2) P[(∀x)(Rx ⊃ Bx) | Ba · Kα] ≈ P[(∀x)(Rx ⊃ Bx) | ∼Ba · Kα]

Vranas argues convincingly that strong independence assumptions like (3)
(and (2)) have not been well motivated by Bayesians who endorse the
quantitative approach to the ravens paradox. He rightly claims that this is
a lacuna in the canonical quantitative Bayesian analyses of the paradox.
But, what he ultimately shows is somewhat weaker than appearances
might suggest. In the next section we will describe ( pace Vranas and most
other commentators) considerably weaker sets of assumptions for the
comparative Bayesian approaches (analogous results for the quantitative
approaches are proved in Fitelson and Hawthorne 2006).

7. A New Bayesian Approach to the Paradox

In the comparative case, the primary aim is to establish (COMPP). As we
have seen, Bayesians typically make two quite strong independence
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assumptions in order to achieve this goal. Happily, a perfectly satisfactory
analysis of the ravens may be given that employs no independence assump-
tions at all.

In this section, we offer a solution to the raven paradox that is more
general than other solutions we know of. It draws on much weaker
assumptions. It solves the paradox in that it supplies quite plausible suffi-
cient conditions for the observation of a black raven to confirm “All
ravens are black” more strongly than observation of a non-black non-raven
would confirm it (see Fitelson and Hawthorne 2006 for necessary and
sufficient conditions). These conditions do not draw on probabilistic inde-
pendence (they are strictly weaker than the standard independence assump-
tions). And they in no way depend on whether Nicod’s Condition (NC)
is satisfied. Our conditions can be satisfied both in cases were a positive
instance confirms that all ravens are black and in cases where a positive
instance disconfirms that all ravens are black (as in Good’s counterexample
to NCs).

Let ‘H’ abbreviate “All ravens are black” – i.e., ‘(∀x)(Rx ⊃ Bx)’. Let
‘K’ be a statement of whatever background knowledge you may think
relevant – e.g. K might imply, among other things, that ravens exist and
that non-black things exist, ((∃x)Rx · (∃x)∼Bx). One object, call it ‘a’ will
be observed for color and to see whether it is a raven. The idea is to assess,
in advance of observing it, whether a’s turning out to be a black raven,
(Ra · Ba), would make H more strongly supported than would a’s turning
out to be a non-black non-raven, (∼Ra · ∼Ba). That is, we want to find
plausible sufficient conditions (in Fitelson and Hawthorne 2006, we
report necessary and sufficient conditions) for P[H | Ba · Ra · K ] >
P[H | ∼Ba · ∼Ra · K ]. We assume throughout only this:

Background Assumptions about K: 0 < P[H | Ba · Ra · K] < 1, 0 <
P[H | ∼Ba · ∼Ra · K ] < 1, P[∼Ba · Ra | K ] > 0, and P[∼Ba | K ] > P[Ra | K ].

That is, we assume only that finding a to be a black raven neither abso-
lutely proves nor absolutely falsifies “All ravens are black”; and the same
goes if a is found to be a non-black non-raven. In addition we assume
that it is at least possible, given only background K, that a will turn out
to be a non-black raven. And, finally, we assume that there are more non-
black objects in the universe than there are ravens (which is the uncontro-
versial assumption (1) that appears in the orthodox Bayesian treatment of
the paradox). Given these background assumptions about K, the following
Theorem can be proven.

THEOREM. If P[H | Ra · K ] ≥ P[H | ∼Ba · K ], then P[H | Ba · Ra · K ]
> P[H | ∼Ba · ∼Ra · K ].

Thus, pace Vranas, we have a much weaker sufficient condition for
(COMPP), which does not presuppose any kind of probabilistic independ-
ence (or even “approximate independence”). Moreover, unlike the strong
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independence assumptions in the traditional Bayesian accounts, the pre-
conditions of our theorem do not imply (PC).14 So, we have discovered a
purely comparative Bayesian approach to the paradox of confirmation,
which avoids the troubling independence assumptions that appear in tra-
ditional Bayesian accounts, and which does not require commitment to
the paradoxical conclusion (PC). Intuitively, what our sufficient condition
says is that the observation that a is a raven does not confirm that all
ravens are black any less strongly than the observation that a is non-black.
We think this assumption is quite plausible (it is certainly far more plau-
sible than the independence assumptions which Vranas rightly criticizes).
Other (more general) recent theorems for both the qualitative and quan-
titative cases are reported and discussed in detail in (Fitelson and Haw-
thorne 2006).

8. Coda: Hempel meets Bayes?

As we have seen, most contemporary Bayesians (Maher 2004 is a notable
exception here) accept (PC). In this sense, modern Bayesians are rather
“Hempelian” at heart. Moreover, in his plausible and intuitive resolution
of the paradox, Hempel appeals to “tautological” vs “nontautological”
confirmation, which is a very Bayesian-friendly idea. Unfortunately,
Hempel’s Bayesian-friendly intuitions contradict his monotonic, deductive,
non-Bayesian theory of confirmation. Putting these things together, we
can formulate a two-pronged “Hempel-Bayes resolution” of the paradox.
The first prong is to distinguish (PC) and (PC*) in their Bayesian forms:
(PCα) and (PC*α). Plausibly, relative to our actual background knowledge,
(PC*) is false (i.e., (PC*α) is false). On the other hand, (PCα)’s truth-value
will depend on the actual (known) statistical distribution of objects in the
universe. This is enough to make the Hempel-Bayes point that conflating
(PCα) and (PC*α) can generate the appearance of a paradox (e.g., if (PCα)
turns out to be true). The second prong is that even if (PCα) should turn
out to be true, only very weak conditions need to be satisfied in order to
ensure that the observation of a non-black non-raven confirms that all
ravens are black less strongly than the observation of a black raven does.
This approach harnesses the power and richness of contemporary Bayesian
confirmation theory, without abandoning Hempel’s original intuitions
about the paradox of confirmation, and without saddling the contemporary
confirmation theorist with commitments to either (NC) or (PC).

Notes
1 Much of the material in this article (especially, the theorems in the last sections) is drawn
from Fitelson and Hawthorne (2006). As such, Jim Hawthorne is equally responsible for many
of the results and analyses reported here. This also explains the use of “we” rather than “I”
throughout the article.
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2 We will remain neutral at this point as to whether this relation of support is logical or
epistemic in nature. Later, we will see both epistemic and logical readings of “confirms.”
3 There are some people who have rejected (EC) in response to the paradox of confirmation.
See, for instance, Scheffler (1963), Sylvan and Nola (1991), and Gemes (1999). We will not
discuss such responses to the paradox in this article.
4 Strictly speaking, this isn’t exactly correct. What’s true (strictly speaking) is that, according to
Hempel’s (1943, 1945) theory, if E confirms X, then so does E · K, for any K – provided that
K doesn’t mention any individuals not already mentioned in E and H. But, in the case at hand, this
caveat is satisfied, since ∼Ra (K ) only mentions the individual a, which is the only individual
mentioned in E and H. Hence, no loss of generality results (for our present purposes) by stating
the monotonicity condition (M) in this simplified way.
5 Interestingly, while Hempel and Goodman are completely unsympathetic to Quine’s strategy
here, they are much more sympathetic to such maneuvers in the context of the Grue Paradox.
In this sense, Quine’s approach to the paradoxes is more unified and systematic than Hempel’s
or Goodman’s, since they give “special treatment” to Grue-predicates, while Quine views the
problem – in both paradoxes of confirmation – to be rooted in the “non-naturalness” of the
referents of the predicates involved. For what it’s worth, we think a unified and systematic
approach to the paradoxes is to be preferred. But, we think a unified Bayesian approach is
preferable to Quine’s instantial approach. However, our preferred Bayesian treatment of Grue
will have to wait for another occasion.
6 For simplicity (and following modern Bayesian tradition), we will just assume that P[•] is some
rational credence function, and that it behaves in accordance with the standard (Kolmogorov 1956)
axiomatization of the (classical) probability calculus. If we were to follow Hájek (2003) and Joyce
(1999) and assume that P[• | •] is a Popper function, then the story would become much more
complicated and less unified (formally). See Fitelson (2003) for a discussion of the disunifying
effect the adoption of Popper functions would have on Bayesian confirmation theory.
7 In informal and intuitive terms, Maher (2004) characterizes his counterexample to (QNC)
(hence, also to (NC)) as follows: “According to standard logic, ‘All unicorns are white’ is true
if there are no unicorns. Given what we know, it is almost certain that there are no unicorns
and hence ‘All unicorns are white’ is almost certainly true. But now imagine that we discover
a white unicorn; this astounding discovery would make it no longer so incredible that a non-
white unicorn exists and hence would disconfirm ‘All unicorns are white.’” As such, Maher’s
example can be seen as a precisification of “Good’s Baby.”
8 Metaphysically, there may be a problem with “non-natural kinds” (in Quine’s sense – e.g.,
disjunctive and negative properties) participating in certain kinds of causal or other law-like
relations. This sort of problem has been suggested in the contemporary literature by Armstrong
(1978), Shoemaker (1980), and others. But, we think this metaphysical fact (if it is a fact) has
few (if any) confirmational consequences. Confirmation is a logical or epistemic relation, which
may or may not align neatly with metaphysical relations like causation or law-likeness. A proper
defense of this position on natural kinds and confirmation would require providing an adequate
Bayesian analysis of the Grue paradox, along similar lines to the resolution of the Raven
paradox, presented below. While we think such a resolution can be provided (contrary to what
most people in the contemporary literature seem to think), that it beyond the scope of this
article.
9 As Chihara (1981) points out, “there is no such thing as the Bayesian solution. There are many
different ‘solutions’ that Bayesians have put forward using Bayesian techniques.” That said, we
present here what we take to be the most standard assumptions Bayesians tend to make in their
handling of the paradox – assumptions that are sufficient for the desired comparative and quan-
titative confirmation-theoretic claims. On this score, we follow Vranas (2004). However, not
all Bayesians make precisely these assumptions. To get a sense of the variety of Bayesian
approaches, see, e.g.: Alexander (1958), Chihara (1981), Earman (1992), Eells (1982), Gaifman
(1979), Gibson (1969), Good (1960, 1961), Hesse (1974), Hooker and Stove (1968), Horwich
(1982), Hosiasson-Lindenbaum (1940), Howson and Urbach (1993), Jardine (1965), Mackie (1963),
Nerlich (1964), Suppes (1966), Swinburne (1971), Wilson (1964), Woodward (1985), Hintikka
(1969), Humburg (1986), Maher (1999, 2004), and Vranas (2004).
10 We take logarithms of the ratio measures just to ensure that they are positive in cases of
confirmation, negative in cases of disconfirmation, and zero in cases of neutrality of irrelevance.
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This is a useful convention for present purposes, but since logs don’t alter the ordinal structure
of the measures, it is a mere convention.
11 This has led some defenders of s to abandon it as a measure of incremental confirmation.
See Joyce (2003, fn. 11). See, also, Eells and Fitelson (2000, 2002) and Fitelson (2001) for
further peculiarities of the measure s. For a rigorous counterexample to the implication
(COMPP) ⇒ (COMPs), the details of which are beyond the scope of this article, see the
Appendix of Fitelson (2001).
12 Often, Bayesians use a two-stage sampling model in which two objects a and b are sampled at
random from the universe, where Kα entails (Ra · ∼Bb) (e.g., Earman (1992)). On that model
we still have (2), but (3) is replaced with P[∼Bb | H · Kα] = P[∼Bb | Kα], and (COMPP) is
replaced by (COMPP′) P[H | Ra · Ba · Kα] P[H | ∼Bb · ∼Rb · Kα]. So, no real loss of generality
comes from restricting our treatment to “one-stage sampling” – i.e., to the selection of a single
object a, which Kα doesn’t specify to be either an R or a ∼B (Vranas 2004, fns. 10 and 18).
We prefer a one-stage sampling approach because we think it is closer in spirit to what Hempel
and Goodman took the original paradox to be about – where Kα is assumed not to have any
implications about the color or species of the objects sampled, and where a single object is
observed “simultaneously” for its color and species.
13 However, Vranas does not argue that (3′) is false or implausible – only that no good argument
for its plausibility has been given. So, it is consistent with his result that one might be able to
find some plausible condition X that, together with (1′), implies (QUANTc). Vranas’ result
would then show that condition X (together with (1′)) also implies (3′) – and so in effect would
provide a plausibility argument for (3′). Some of the results proved in the last two sections of
Fitelson and Hawthorne (2006) provide such plausible conditions, X.
14 Our assumption P[H | Ra · K ] ≥ P[H | ∼Ba · K ] is strictly weaker than the independence
assumptions (2) and (3), since together those imply P[H | Ra · K ] = P[H | ∼Ba · K ] = P[H].
Interestingly, this new, weaker sufficient condition for (COMPP) discovered by Fitelson and
Hawthorne (2006) does not entail (COMPc) if one uses the measure s to gauge degree of
confirmation. This is further evidence of the inadequacy of s as a confirmation measure.
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