
Inductive Logic

1.  Brief Historical Background and Motivation

The idea of inductive logic as providing a general, quantitative way of evaluating arguments is a
relatively modern one.  Aristotle’s conception of ‘induction’ (§παγωγÆ) — which he
contrasted with ‘reasoning’ (σνλλογισµÒς) — only involved moving from particulars to
universals (Kneale and Kneale (1960: 36)).  This rather narrow way of thinking about inductive
reasoning seems to have held sway through the Middle Ages, and into the 17th century when
Francis Bacon (1620) developed an elaborate account of such reasoning.  During the 18th and
19th centuries, the scope of inductive reasoning began to broaden considerably with the advent
of more sophisticated inductive techniques (e.g., those of Mill (1843)), and with precise
mathematical accounts of the notion of probability.   Intuitive and quasi-mathematical notions of
probability had long been used to codify various aspects of uncertain reasoning in the contexts of
games of chance and statistical inference (see Stigler (1986) and Dale (1999)), but a more
abstract and formal approach to probability theory would be necessary to formulate the general
modern inductive-logical theories of non-demonstrative inference.  In particular, the pioneering
work in probability theory by Bayes (1764), Laplace (1812), Boole (1854) and many others in
the 18th and 19th centuries laid the groundwork for a much more general framework for
inductive reasoning.  (See PROBLEM OF INDUCTION for parallel historical developments in
philosophical thinking about the possibility of inductive knowledge, most famously articulated
by Hume (1739, 1740, 1758).)

The contemporary idea of inductive logic (as a general, logical theory of argument
evaluation) did not begin to appear in a mature form until the late 19th and early 20th centuries.
Some of the most eloquent articulations of the basic ideas behind inductive logic in this modern
sense appear in John Maynard Keynes’ Treatise on Probability.  Keynes (1921: 8) describes a
“logical relation between two sets of propositions in cases where it is not possible to argue
demonstratively from one to another.”  Nearly thirty years later, Rudolf Carnap (1950) published
his encyclopedic work Logical Foundations of Probability in which he very clearly explicates
the idea of an inductive-logical relation called “confirmation” which is a quantitative
generalization of deductive entailment.  (See also CONFIRMATION THEORY.)  The following
quote from Carnap (1950) gives some insight into the modern project of inductive logic and its
relation to classical deductive logic:

Deductive logic may be regarded as the theory of the relation of logical
consequence, and inductive logic as the theory of another concept [�] which is
likewise objective and logical, viz., … degree of confirmation. (43)

More precisely, the following three fundamental tenets have been accepted by the vast majority
of proponents of modern inductive logic

1. Inductive logic should provide a quantitative generalization of (classical) deductive logic.
That is, the relations of deductive entailment and deductive refutation should be captured
as limiting (extreme) cases with cases of ‘partial entailment’ and ‘partial refutation’ lying
somewhere on a continuum (or range) between these extremes.



2. Inductive logic should use probability (in its modern sense) as its central conceptual
building block.

3. Inductive logic (i.e., the non-deductive relations between propositions that are
characterized by inductive logic) should be objective and logical.

(See Skyrms (2000: chapter 2) for a contemporary overview.)  In other words, the aim of
inductive logic is to characterize a quantitative relation (of inductive strength or confirmation) �
which satisfies desiderata (1)–(3) above.  The first two of these desiderata are relatively clear (or
will quickly become clear below).  The third desideratum is less clear.  What does it mean for the
quantitative relation � to be objective and logical?  Carnap (1950) explains his understanding of
(3) as follows (brackets added):

That � is an objective concept means this: if a certain � value holds for a certain
hypothesis with respect to a certain evidence, then this value is entirely
independent of what any person may happen to think about these sentences, just
as the relation of logical consequence is independent in this respect. (43)

The principal common characteristic of the statements in both fields [viz.,
deductive and inductive logic] is their independence of the contingency of facts
[viz., facts of nature].  This characteristic justifies the application of the common
term ‘logic’ to both fields. (200)

The remaining sections of this article will examine a few of the prevailing modern theories of
inductive logic, and discuss how they fare with respect to these three central desiderata.  The
meaning and significance of these desiderata will be clarified, and the received view about
inductive logic critically evaluated.

2. Inductive Logic — the Basic Ideas

2.1.   Some Basic Terminology and Machinery for Inductive Logic

It is often said (e.g., in many contemporary introductory logic texts) that there are two kinds of
arguments: deductive and inductive, where the premises of deductive arguments are intended to
guarantee the truth of their conclusions, while inductive arguments involve some risk of their
conclusions being false even if all of their premises are true (see, e.g., Hurley (2003)).  It seems
better to say that there is just one kind of argument: an argument is a set of propositions, one of
which is the conclusion, the rest premises.  There are many ways of evaluating arguments.
Deductive logic offers strict, qualitative standards of evaluation—the conclusion either follows
from the premises or it does not; whereas, inductive logic provides a finer-grained (and thereby
more liberal) quantitative range of evaluation standards for arguments. (One can also define
comparative and/or qualitative notions of inductive support or confirmation.   Carnap (1950: §8)
and Hempel (1945) both provide penetrating discussions of quantitative vs.
comparative/qualitative notions of confirmation and/or inductive support.  For simplicity, our
focus will be on quantitative approaches to inductive logic, but most of the main issues and
arguments discussed below can be recast in comparative or qualitative terms.)

Let {P1, …, Pn} be a finite set of propositions constituting the premises of an (arbitrary)
argument, and let C be its conclusion.  Deductive logic aims to explicate the concept of validity
(i.e., ‘deductive-logical goodness’) of arguments.  Inductive logic aims to explicate a quantitative



generalization of this deductive concept.  This generalization is often called the “inductive
strength” of an argument.  (Carnap (1950) uses the word “confirmation” here.)  Following
Carnap, the notation �(C, {P1, …, Pn}) will denote the degree to which {P1, …, Pn} jointly
inductively support (or “confirm”) C.

As desideratum (2) indicates, the concept of probability is central to the modern project
of inductive logic.  The notation Pr(•) and Pr(• | •) will denote unconditional and conditional
probability functions, respectively.   Informally (and roughly), “Pr(p)” can be read “the
probability that proposition p is true”, and “Pr(p | q)” can be read “the probability that
proposition p is true, given that proposition q is true”. The nature of probability functions and
their relation to the project of inductive logic will be a central theme in what follows.

2.2. A Naive Version of Basic Inductive Logic, and The Received View

According to classical deductive propositional logic, the argument from {P1, …, Pn} to C is valid
iff the material conditional (P1 & … & Pn) ⊃ C is (logically) necessarily true. Naively, one might
try to define “inductively strong” as follows: the argument from {P1, …, Pn} to C is inductively
strong iff the material conditional (P1 & … & Pn) ⊃ C is (logically?) probably true.  More
formally, one can express this Naive Inductive Logic (NIL) proposal as follows:

(NIL) �(C, {P1, …, Pn}) is high iff Pr((P1 & … & Pn) ⊃ C) is high.

There are problems with this first, naive attempt to use probability to generalize deductive
validity quantitatively.  As Skyrms (2000: 19–22) points out, there are (intuitively) cases in
which the material conditional (P1 & … & Pn) ⊃ C is probable but the argument from {P1, …,
Pn} to C is not a strong one.  Skyrms (2000: 21) gives the following example:

(P) There is a man in Cleveland who is 1999 years and 11-months-old and in good health.

(C) No man will live to be 2000 years old.

Skyrms argues that Pr(P ⊃ C) is high, simply because Pr(C) is high, and not because there is any
evidential relation between P and C.  Indeed, intuitively, the argument from (P) to (C) is not
strong, since (P) seems to disconfirm or counter-support (C).  Thus, Pr((P1 & … & Pn) ⊃ C)
being high is not sufficient for �(C, {P1, …, Pn}) being high. Note, also, that Pr((P1 & … & Pn) ⊃
C) cannot serve as �(C, {P1, …, Pn}), since it violates desideratum (1).  If {P1, …, Pn} refutes C,
then Pr((P1 & … & Pn) ⊃ C) = Pr(~(P1 & … & Pn)), which is not minimal, since the conjunction
of the premises of an argument need not have probability one.

Skyrms suggests that the mistake (NIL) makes is one of conflating the probability of the
material conditional: Pr((P1 & … & Pn) ⊃ C) with the conditional probability of C, given P1 & …
& Pn: Pr(C | P1 & … & Pn).  And, according to Skyrms, it is the latter which should be used as a
definition of �(C, {P1, …, Pn}).  The reason for this preference is that Pr((P1 & … & Pn) ⊃ C)
fails to capture the evidential relation between the premises and conclusion, since Pr((P1 & … &
Pn) ⊃ C) can be high solely in virtue of the unconditional probability of (C) being high or solely
in virtue of the unconditional probability of P1 & … & Pn being low.  As Skyrms (2000: 20)
stresses, �(C, {P1, …, Pn}) should measure the “evidential relation between the premises and the



conclusion.”  This leads Skyrms (and many others) to defend the following account, which might
be called “The Received View” (TRV) about inductive logic:

(TRV) �(C, {P1, …, Pn}) = Pr(C | P1 & … & Pn)

The idea that �(C, {P1, …, Pn}) should be identified with the conditional probability of C, given
P1 & … & Pn has been nearly universally accepted by inductive logicians since the inception of
the contemporary discipline (recent pedagogical advocates of (TRV) include Copi and Cohen
(2001), Hurley (2003), and Layman (2002), and historical champions of various versions of
(TRV) include Keynes (1921), Carnap (1950), Kyburg (1970), Skyrms (2000), and many others).
There are nevertheless some compelling reasons to doubt the correctness of (TRV) These
reasons, which are analogous to Skyrms’s reasons for rejecting (NIL), will be discussed below.
But, before one can adequately assess the merits of (NIL), (TRV), and other proposals
concerning inductive logic, one needs to say more about probability models and their relation to
inductive logic. (For greater detail, see PROBABILITY.)

3  Probability, its Interpretation, and its Role in Traditional Inductive Logic

3.1 The Mathematical Theory of Probability

For present purposes, assume that a probability function Pr(•) is a finitely additive measure
function over a Boolean algebra of propositions (or sentences in some formal language).  That is,
assume that Pr(•) is a function from a Boolean algebra B of propositions (or sentences) to the
unit interval [0,1] satisfying the following three axioms (this is Kolmogorov’s (1950)
Axiomatization), for all propositions X and Y in B:

 i. Pr(X) ≥ 0.
 ii. If X is a (logically) necessary truth, then Pr(X) = 1.
 iii. If X and Y are mutually exclusive, then Pr(X ∨ Y) = Pr(X) + Pr(Y).

And, following Kolmogorov, define conditional probability Pr(• | •) in terms of unconditional
probability Pr(•), as follows:

Definition.  Pr(X | Y) = Pr(X & Y) / Pr(Y), provided that Pr(Y) ≠ 0.

A probability model M = <B, PrM> consists of a Boolean algebra B of propositions (or sentences
in some language), together with a particular probability function PrM(•) over the elements of B.

These axioms (and definition) say what the mathematical properties of probability
models are, but they do not say anything about the interpretation or application of such models.
The latter issue is philosophically more central, and more controversial than the former
(although, see Popper (1992: appendix *iv), Roeper and Leblanc (1999), and Hájek (2003) for
dissenting views on the formal theory of conditional probability). There are various ways in
which one can interpret or understand probabilities.  (See Hájek (2002) and PROBABILITY for
a thorough discussion.)  The two interpretations that are most commonly encountered in the
context of applications to inductive logic are the so-called “epistemic” and “logical”
interpretations of probability.



3.2  Epistemic Interpretations of Probability

On epistemic interpretations of probability, PrM(H) is (roughly) the degree of belief an
epistemically rational agent assigns to H, according to a probability model M of the agent’s
epistemic state.  A rational agent’s background knowledge K is assumed (in orthodox theories of
epistemic probability) to be “included” in any epistemic probability model M, and therefore K is
assumed to have an unconditional probability of 1 in M.  PrM(H | E) is the degree of belief an
epistemically rational agent assigns to H upon learning that E is true (or on the supposition that E
is true – see Joyce (1999: Chapter 6) for discussion), according to a probability model M of the
agent’s epistemic state.  According to standard theories of epistemic probability, agents learn by
conditionalizing on evidence.  So, roughly speaking, (the probabilistic structure of) a rational
agent’s epistemic state evolves (in time t) through a series of probability models {Mt}, where
evidence learned at time t has probability 1 in all subsequent models {Mt′}, t′ > t.

Keynes (1921: 4) seems to be employing an epistemic interpretation of probability in his
inductive logic when he says

Let our premises consist of any set of propositions h, and our conclusion consist
of any set of propositions a, then, if a knowledge of h justifies a rational degree
of belief in a of degree x, we say that there is a probability-relation of degree x
between a and h [Pr(a | h) = x].

It is not obvious that (TRV) can satisfy desideratum (3) — that � be logical and objective — if
the probability function Pr that is used to explicate � in (TRV) is given an epistemic
interpretation of this kind.  After all, whether “a knowledge of h justifies a rational degree of
belief in a of degree x” seems to depend on what one’s background knowledge K is.  And, while
this is arguably an objective fact, it also seems to be a contingent fact, and not something that
could be determined a priori (on the basis of a and h alone). As Keynes (1921: 4) explains, his
probability function Pr(a | h) is not subjective, since “once the facts are given which determine
our knowledge [viz., background + h], what is probable or improbable [viz., a] in these
circumstances has been fixed objectively, and is independent of our opinion.”  But, he later
suggests that the function is contingent on what the agent’s background knowledge K is, in the
sense that Pr(a | h) can vary “depending upon the knowledge to which it is related.” Carnap
(1950: §45B) is keenly aware of this problem.  Carnap suggests that Keynes should have
characterized Pr(a | h) as the degree of belief in a that is justified by knowledge of h — and
nothing else (the reader may want to ponder what it might mean for an agent to “know h and
nothing else”).  As Keynes’ remarks suggest (and as Maher (1996) explains), the problem is even
deeper than this, since even a complete specification of an agent’s background knowledge K may
not be sufficient to pick out a unique (rational) epistemic probability model M for an agent
(Keynes’ reaction to this was to conclude that sometimes quantitative judgments of inductive
strength or degree of conditional probability are not possible, and that in these cases we must
settle for qualitative or comparative judgments). The problem here is that “Pr(X | K)” (“the
probability of X, given background knowledge K”) will not (in general) be determined, unless an
epistemic probability model M is specified, which (a fortiori) gives PrM(X), for each X in M.
And, without a determination of these fundamental or “a priori” probabilities PrM(X), a general
(quantitative) theory of inductive logic based on epistemic probabilities seems all but hopeless.
This raises the problem of specifying an appropriate “a priori” probability model M.  Keynes



(1921: chapter 4) and Carnap (see below) both look to the Principle of Indifference at this point,
as a guide to choosing “a priori” probability models.  Before we discuss the role of the Principle
of Indifference, we must first address logical interpretations of probability.

3.3 Logical Interpretations of Probability

Philosophers who accepted (TRV) and who were concerned about the inductive-logical
ramifications (mainly, regarding the satisfaction of desideratum (3)) of interpreting probabilities
epistemically began to formulate logical interpretations of probability.  On logical interpretations
of probability, conditional probabilities Pr(X | Y) are themselves understood as quantitative
generalizations of an (logical) entailment (or deducibility) relation between propositions Y and
X.  The motivation for this should be clear.  This seems like the most direct way to guarantee
that a (TRV)-type theory of inductive logic will satisfy desideratum (3).  If Pr(• | •) is itself
logical, then �(•,•) — which, according to (TRV), is defined as Pr(• | •) — should also be logical,
and the satisfaction of desideratum (3) seems automatic (and, of course, the other two desiderata
would automatically be satisfied by this move as well).  Below it will become clear that “(TRV)
+ logical probability” is not the only way (and not necessarily the best way) to satisfy the three
desiderata for providing an adequate account of the logical relation of inductive support.  In
preparation, the notion of logical probability must be examined in some detail.

Typically, logical interpretations of probability attempt to define Pr(q | p) — where p and
q are sentences in some formal first-order language L — in terms of the syntactical features of p
and q (in L).  The most famous logical interpretations of probability are those of Carnap (1950,
1952, 1971, 1980).   A sketch of the simplest of Carnap’s early (1950) constructions will give the
main ideas.  (It is interesting to note that Carnap’s (1950) and (1952) systems are almost
identical to systems described 20–30 years earlier by W.E. Johnson (1921) and (1932),
respectively.  See Paris (1994: chapter 12) and Kyburg (1970: chapter 5) for a rigorous technical
development of Carnap’s (1952) — and W.E. Johnson’s (1932) — continuum; see Maher (2000,
2001) for a detailed critical discussion of Carnap’s more recent (1971, 1980) two-dimensional
continua, which are increasingly complicated, and less tightly coupled with the syntax of L; see
Glaister (2001) and Festa (1993) for broader surveys of Carnapian theories of logical probability
and inductive logic; and, see Skyrms (1996) for discussion of some recent applications of
“Carnapian” techniques to Bayesian statistical models involving continuous random variables.)   

Begin with a standard first-order logical language L containing a finite number of
monadic predicates: F, G, H, …, and a finite or denumerable number of individual constants a, b,
c, ….  Define an unconditional probability function Pr(•) over the sentences of L.  Finally,
following the standard Kolmogorovian approach, construct a conditional probability function
Pr(• | •) over pairs of sentences of L, using the ratio definition of conditional probability, above.
To fix ideas, consider a very simple toy language L with only two monadic predicates ‘F’ and
‘G’ and only two individual constants ‘a’ and ‘b’.  In this language, there are only 16 possible
states of the world that can be described.  These 16 maximally specific descriptions are called the
state descriptions of L, and they are as follows:

Fa & Ga & Fb & Gb
Fa & Ga & Fb & ~Gb
Fa & Ga & ~Fb & Gb
Fa & Ga & ~Fb & ~Gb

~Fa & Ga & Fb & Gb
~Fa & Ga & Fb & ~Gb
~Fa & Ga & ~Fb & Gb
~Fa & Ga & ~Fb & ~Gb



Fa & ~Ga & Fb & Gb
Fa & ~Ga & Fb & ~Gb
Fa & ~Ga & ~Fb & Gb
Fa & ~Ga & ~Fb & ~Gb

~Fa & ~Ga & Fb & Gb
~Fa & ~Ga & Fb & ~Gb
~Fa & ~Ga & ~Fb & Gb
~Fa & ~Ga & ~Fb & ~Gb

Two state descriptions S1 and S2 are said to be permutations of each other if S1 can be obtained
from S2 by some permutation of the individual constants.  For instance, ‘Fa & ~Ga & ~Fb & Gb’
can be obtained from ‘~Fa & Ga & Fb & ~Gb’ by permuting ‘a’ and ‘b’.  Thus, ‘Fa & ~Ga &
~Fb & Gb’ and ‘~Fa & Ga & Fb & ~Gb’ are permutations of each other (in L).  A structure
description in L is a disjunction of state descriptions, each of which is a permutation of the
others.  In our toy language L, we have the following 10 structure descriptions:

Fa & Ga & Fb & Gb
(Fa & Ga & Fb & ~Gb) ∨ (Fa & ~Ga & Fb & Gb)
(Fa & Ga & ~Fb & Gb) ∨ (~Fa & Ga & Fb & Gb)
(Fa & Ga & ~Fb & ~Gb) ∨ (~Fa & ~Ga & Fb & Gb)
Fa & ~Ga & Fb & ~Gb

(Fa & ~Ga & ~Fb & Gb) ∨ (~Fa & Ga & Fb & ~Gb)
(Fa & ~Ga & ~Fb & ~Gb) ∨ (~Fa & ~Ga & Fb & ~Gb)
~Fa & Ga & ~Fb & Gb
(~Fa & Ga & ~Fb & ~Gb) ∨ (~Fa & ~Ga & ~Fb & Gb)
 ~Fa & ~Ga & ~Fb & ~Gb

Now assign non-negative real numbers to the state descriptions, so that these 16 numbers sum to
one.  Any such assignment will constitute an unconditional probability function Pr(•) over the
state descriptions of L.  To extend Pr(•) to the entire language L, stipulate that the probability of
a disjunction of mutually exclusive sentences is the sum of the probabilities of its disjuncts.
And, since every sentence in L is equivalent to some disjunction of state descriptions, and every
pair of state descriptions is mutually exclusive, this gives a complete unconditional probability
function Pr(•) over L.  For instance, since ‘Fa & Ga & ~Gb’ is equivalent to the disjunction ‘(Fa
& Ga & Fb & ~Gb) ∨ (Fa & Ga & ~Fb & ~Gb)’ we will have:

Pr(Fa & Ga & ~Gb) = Pr((Fa & Ga & Fb & ~Gb) ∨ (Fa & Ga & ~Fb & ~Gb))
= Pr(Fa & Ga & Fb & ~Gb) + Pr(Fa & Ga & ~Fb & ~Gb)

Now, it is only a brief step to the definition of the conditional probability function Pr(• | •) over
pairs of sentences in L.  Using the standard, Kolmogorovian ratio definition of conditional
probability, we have, for all pairs of sentences X, Y in L:

Pr(X | Y) = Pr(X & Y) / Pr(Y), provided that Pr(Y) ≠ 0

Thus, once the unconditional probability function Pr(•) is specified for the state descriptions of a
language L, all probabilities both conditional and unconditional are thereby determined over L.
And, this gives us a “logical probability model” M over the language L.  The unconditional,
logical probability functions so defined are typically called measure functions.  Carnap (1950)
discusses two “natural” measure functions.

The first Carnapian measure function is �†, which assumes that each of the state
descriptions is equiprobable a priori: if there are N state descriptions in L, then �† assigns 1/N to
each state description.  While this may seem like a very natural measure function, since it applies
something like the Principle of Indifference to the state descriptions of L (see below for
discussion), �† has the consequence that the resulting probabilities cannot reflect learning from



experience.  Consider the following simple example.  Assume that you adopt a logical
probability function Pr(•) based on �† as your own a priori degree of belief (or credence)
function.  Then, you learn (by conditionalizing) that an object a is F [i.e., you learn that Fa].
Intuitively, your conditional degree of credence Pr(Fb | Fa) that a distinct object b also has F,
given that a has F should not always be the same as your a priori degree of credence that b is F.
That is, the fact that you have observed another F object should be capable (at least in some
cases) of making it more probable (a posteriori) that b will also have F (i.e., more probable than
Fb was a priori).  More generally, if you observe that a large number of objects have been F, this
should be capable of raising the probability that the next object you observe will also be F.
Unfortunately, no a priori probability function based on �† is consistent with learning from
experience in either sense. To see this, consider the simple case Pr(Fb | Fa):

Pr(Fb | Fa) = �†(Fb & Fa) / �†(Fa) = 1/2 = �†(Fb) = Pr(Fb)

So, if one assumes an a priori probability function based on �†, the fact that one object has
property F cannot affect the probability that any other object will also have property F.  Indeed, it
can be shown (see Kyburg (1970: 58-59)) that no matter how many objects are assumed to be F,
this will be irrelevant (according to probability functions based on �†) to the hypothesis that a
distinct object will also be F.

The fact that (on the probability functions generated by the measure �†) no object’s
having certain properties can be informative about other objects also having those same
properties has been viewed as a serious shortcoming of �†.  (See Carnap (1955) for discussion.)
As a result, Carnap formulated an alternative measure function �*, which is defined as follows.
First, assign equal probabilities to each structure description (in the toy language above, 1/10).
Then, each state description belonging to a given structure description is assigned an equal
portion of the probability assigned to that structure description).  For instance, in the toy
language, the state description ‘Fa & Ga & ~Fb & Gb’ gets assigned an a priori probability of
1/20 (1/2 of 1/10), but the state description ‘Fa & Ga & Fb & Gb’ receives an a priori probability
of 1/10 (1/1 of 1/10).  To further illustrate the differences between �† and �*, here are some
numerical values in the toy language L:

Measure Function �† Measure Function �*

�†(Fa & Ga & ~Fb & Gb) = 1/16
�†((Fa & Ga & ~Fb & Gb) ∨ ((~Fa & Ga & Fb & Gb))) = 1/8

�†(Fa) = 1/2
Pr†(Fa | Fb) = 1/2 = �†(Fa) = Pr†(Fa)

�*(Fa & Ga & Fb & Gb) = 1/10
�*(Fa & Ga & ~Fb & Gb) = 1/20
�*(Fa) = 1/2
Pr*(Fa | Fb) = 3/5 > 1/2 = �*(Fa) = Pr*(Fa)

So, unlike �†, �* can model “learning from experience,” since in the simple language Pr(Fa |
Fb) = 3/5 > 1/2 = Pr(Fa), if the probability function Pr is defined in terms of the logical measure
function �*.  Although �* does have some advantages over �†, even �* can give
counterintuitive results in more complex languages.  (See Carnap (1952) for discussion.)

Carnap (1952) presents a more complicated framework (one very much like that reported
by W.E. Johnson (1932) 20 years earlier), which describes a more general class (or “continuum”)
of conditional probability functions (from which the definitions of Pr(• | •) in terms of �* and �†

fall out as special cases).  Carnap’s (1952) continuum of conditional probability functions
depends on a parameter λ which is supposed to reflect the “speed” with which learning from



experience is possible.  In this continuum, λ = 0 corresponds to the “straight rule” of induction,
which says that the probability that the next object observed will be F, conditional upon a
sequence of past observations is simply the frequency with which F objects have been observed
in the past sequence; λ = +∞ yields a conditional probability function much like that given above
by assuming the underlying logical measure �† (i.e., λ = +∞ implies that there is no learning
from experience); and, setting λ = κ (where κ is the number of independent families of
predicates in Carnap’s more elaborate 1952 linguistic framework) yields a conditional
probability function equivalent to that generated by the measure function �*.

Even Carnap’s more elaborate (1952) λ−continuum has problems.  First, none of the
Carnapian systems allow universal generalizations to have non-zero probability.  This problem
was addressed by Hintikka (1966) and Hintikka and Niiniluoto (1980) who provided various
alterations of the Carnapian framework that allow for non-zero probabilities of universal
generalizations.  Moreover, Carnap’s early systems did not allow for the probabilistic modeling
of analogical effects.  That is, in Carnap’s (1950, 1952) systems, the fact that two objects share
several properties in common is always irrelevant to whether they share any other properties in
common.  Carnap’s most recent (and most complex) theories of logical probability (1971, 1980)
include two additional adjustable parameters (γ and η) designed to provide the theory with
enough flexibility to overcome these (and other) limitations.  Unfortunately, no Carnapian
logical theory of probability to date has successfully dealt with the problem of analogical effects.
(See Maher (2000, 2001) for extended discussion.)  Moreover, as Putnam (1963) explains, there
are further (and some say deeper) problems with Carnapian (or, more generally, syntactical)
approaches to logical probability, if they are to be applied to inductive inference generally.  The
consensus now seems to be that the Carnapian project of characterizing an adequate logical
theory of probability is (by his own standards and lights) not very promising.  (See Putnam
(1963), Festa (1993), and Maher (2001) for discussion.)

The present discussion glosses over technical details in the development of (Carnapian)
logical interpretations or theories of probability since 1950 because the present article is about
inductive logic, rather than logical probability.  To recap: what is important for present purposes
is that Carnap (along with the other advocates of “logical probability”) was a (TRV)-theorist
about inductive logic.  He identified the concept �(•,•) of inductive strength (or inductive
support) with the concept of conditional probability Pr(• | •).  And, he thought (partly, because of
the problems he saw with epistemic interpretations) that in order for a (TRV) account to satisfy
desideratum (3), it needed to presuppose a logical interpretation (or theory) of probability.  This
lead him, initially, to develop various logical measures (e.g., the a priori logical probability
functions �† and �*), and then to define conditional logical probability Pr(• | •) in terms of these
underlying a priori logical measures, using the standard ratio definition.  This approach ran into
various problems when it came to the application of Pr(• | •) to inductive logic.  These difficulties
mainly had to do with the ability of Carnap’s Pr(• | •) to undergird learning from experience
and/or certain kinds of analogical reasoning (for other philosophical objections to Carnap’s
logical probability project, see Putnam (1963)).  In response to these difficulties, Carnap began
to fiddle directly with the definition of Pr(• | •).  In 1952 Carnap moved to a parameterized
definition of Pr(• | •), which contained an “index of inductive caution” (λ) that was supposed to
regulate the “speed” with which learning from experience is reflected by Pr(• | •).  Later, Carnap
(1971, 1980) added further parameters (γ and η) to the definition of Pr(• | •) in an attempt to
further generalize the theory, and to allow for sensitivity to certain kinds of analogical effects.



Ultimately, no such theory was ever viewed by Carnap (or others) as fully adequate for the
purposes of grounding a (TRV) conception of inductive logic.

At this point, it is important to ask the following question: in what sense are Carnap’s
theories (especially his later ones) of logical probability logical?  His early theories (based on the
measure functions �† and �*) applied something like the Principle of Indifference (PI) to the
state and/or structure descriptions of the formal language L in order to determine the logical
probabilities Pr(• | •).  In this sense, these early theories assume that certain sentences of L are
equiprobable a priori.  Why is such an assumption logical?  Or, more to the point, how is logic
supposed to tell us which statements are equiprobable a priori? Carnap (1955: 22) explains that:

…the statement of equiprobability to which the principle of indifference leads is,
like all other statements of inductive probability, not a factual but a logical
statement.  If the knowledge of the observer does not favor any of the possible
events, then with respect to this knowledge as evidence they are equiprobable.
The statement assigning equal probabilities in this case does not assert anything
about the facts, but merely the logical relations between the given evidence and
each of the hypotheses; namely, that these relations are logically alike.  These
relations are obviously alike if the evidence has a symmetrical structure with
respect to their possible events.  The statement of equiprobability asserts nothing
more than the symmetry.

Carnap seems to be saying that (PI) is only to be applied to possible events which exhibit certain
a priori symmetries with respect to some rational agent’s background evidence.  But, this
appears no more logical than Keynes’ epistemic approach to probability.  It seems that the
resulting probabilities Pr(• | •)  will not be logical in the sense Carnap desired (at least, no more
so than Keynes’ epistemic probabilities were), unless Carnap can motivate — on logical grounds
— the choice of an a priori probability model.  To that end,  Carnap’s application of (PI) is not
very useful.  Recall that the goal of Carnap’s project (the project of inductive logic) was to
explicate the confirmation relation, which is itself supposed to reflect the evidential relation
between premises and conclusions (Carnap (1950) uses the locutions “degree of confirmation”
and “weight of evidence” synonymously).  How are we to understand what it means for evidence
not to “favor any of the possible events” in a way that does not require us to already understand
how to measure the degree to which the evidence confirms each of the “possible events?”  Here,
Carnap’s discussion of the (PI) presupposes that degree of confirmation is to be identified with
degree of conditional probability.  On that reading, “not favoring” just means “conferring equal
probability on”, and Carnap’s unpacking of the (PI) reduces directly to a mathematical truth
(which, for Carnap, is good enough to render the (PI) a logical principle).  If we had independent
grounds for thinking that conditional probabilities were the right way to measure confirmation
(or weight of evidence), then Carnap would have a rather clever (albeit not terribly informative)
way to (logically) ground his choice of a priori probability models.  Unfortunately, as we will see
below, there are independent reasons to doubt Carnap’s presupposition here that degree of
confirmation should be identified with degree of conditional probability.  And, without that
assumption, Carnap’s (PI) is no longer a logical principle (by his own lights), and the problem of
the contingency (non-logicality) of the ultimate inductive-logical probability assignments returns
with a vengeance.  (There are independent and deep problems with any attempt to consistently
apply the Principle of Indifference to contexts in which hypotheses and/or evidence involve
continuous magnitudes.  See Van Fraassen (1989: chapter 12) for extended discussion.)



Carnap’s later theories (1952, 1971, 1980) of Pr(• | •) introduce even further
contingencies, in the form of adjustable parameters, the “proper values” of which do not seem to
be determinable a priori.  In particular, consider Carnap’s (1952) λ-continuum.  The parameter λ
is supposed to indicate how sensitive Pr(• | •) is to “learning from experience.”  A higher value of
λ indicates “slower learning,” and a lower λ indicates “faster learning.”  As Carnap (1952)
concedes, no one value of λ is “best a priori”.  Presumably, different values of λ are appropriate
for different contexts in which confirmational judgments are made.  (See Festa (1993) for a
contextual Carnapian approach to confirmation.)  It seems that the same must be said for the
additional parameters γ and η (added to further generalize Pr(• | •), and to provide it with the
ability to cope with analogical and other effects) that appear in Carnap’s later systems (1971,
1980).  The moral here seems to be that it is only relative to a particular assignment of values to
λ, γ, and η that probabilistic (and/or confirmational) judgments are objectively and non-
contingently determined in Carnap’s later systems.  This is analogous to the fact that it is only
relative to a (probabilistic) characterization of the agent’s background knowledge and complete
epistemic state — in the form of a specific epistemic probability model M — that Keynes’
epistemic probabilities (or Carnap’s measure functions �* and �†) have a chance of being
objectively and non-contingently determined.

A pattern is developing.  Both Keynes and Carnap give accounts of “a priori” probability
functions Pr(• | •) which involve certain contingencies and indeterminacies.  They each feel
pressure (owing to desideratum (3)) to eliminate these contingencies when the time comes to use
Pr(• | •) as an explication of �(•,•).  The general strategy for rendering these probabilities
“logical” is to choose some privileged, “a priori” probability model.  Here, both Keynes and
Carnap appeal to the Principle of Indifference (PI) to constrain the ultimate choice of model.
Carnap is sensitive to the fact that the (PI) doesn’t seem like a logical principle, but his attempts
to render (PI) logical (and useful for grounding the choice of a priori probability model) are both
unconvincing and uninformative.  There is a much easier and more direct way to guarantee the
satisfaction of desideratum (3).  Why not just define � as a three-place relation — depending on
premises, conclusion, and a particular probability model — from the beginning?

The next section describes a simple, general recipe (along the lines suggested by the
preceding considerations) for formulating probabilistic inductive logics in such a way that they
transparently satisfy desiderata (1)–(3).  This section will also address the following question: Is
(TRV)  materially adequate as an account of inductive strength or inductive support?   This will
lead to a fourth material desideratum for measures of inductive support, and ultimately to a
concrete alternative to The Received View.

4.  Rethinking The Received View (TRV)

4.1  How to Ensure the Transparent Satisfaction of Desideratum (3)

The existing attempts to use the notion of probability to explicate the concept of inductive
support (or inductive strength) � have foundered on the question of their contingency (which
threatened violation of desideratum (3)).  It may be that these contingencies can be eliminated (in
general) only by making the notion of inductive support explicitly relational.  To follow such a
plan, in the case of (TRV) one should rather say:

(TRVr) The inductive strength of the argument from {P1, …, Pn} to C — relative



to a probability model M = <B, PrM> — is PrM(C | P1 & … & Pn).

Relativizing judgments of inductive support to particular probability models fully and
transparently eliminates the contingency and indeterminacy of these judgments.  It is clear that
(TRVr) satisfies all three desiderata, since (1) PrM(C | P1 & … & Pn) is maximal and constant
when {P1, …, Pn} entails C, and PrM(C | P1 & … & Pn) is minimal and constant when {P1, …, Pn}
refutes C; (2) the relation of inductive support is defined in terms of the notion of probability;
and, (3) once the conditional probability function PrM(• | •) is specified (as it is, a fortiori, once
the probability model M is specified), its values are determined objectively and in a way that is
only contingent on certain mathematical facts about the probability calculus.  That is, the
resulting �-values are determined mathematically (and, for someone with logicist leanings like
Carnap, perhaps even logically) by the specification of a particular probability model M.

One might respond at this point by asking: “Okay, but, where do the probability models
M come from? And, how do we choose an ‘appropriate’ probability model in a given inductive-
logical context?”  These are good questions.  However, it is not clear that these are questions the
inductive logician qua logician must answer.  Here, it interesting to note the analogy between the
PrM-relativity of inductive logical relations (on the present approach) and the language relativity
of deductive logical relations on Carnap’s (early) approach to deductive logic.  For the early
Carnap, deductive logical (or, more generally, analytic) relations only obtain between sentences
in a formal language.  The deductive logician is not in the business of telling people which
languages they should use, since this (presumably, pragmatic) question is “external” to deductive
logic.  However, once a language has been specified, the deductive relations among sentences in
that language are determined objectively and non-contingently, and it is up to the deductive
logician to explicate these relations.  On the approach to inductive logic just described, the same
sort of thing can be said for the inductive logician.  It is not the business of the inductive logician
to tell people which probability models they should use (presumably, that is an epistemic or
pragmatic question), but, once a probability model is specified, the inductive logical relations in
that model (viz., �) are determined objectively and non-contingently.  On the present approach,
the duty of the inductive logician is (simply) to explicate the �-function — not to decide which
probability models should be used in which contexts.

One last analogy might be useful here.  When the theory of special relativity came along,
some people were afraid that it might introduce an element of “subjectivity” into physics, since
(e.g.) the velocities of objects were now only determined relative to a frame of reference.  There
was no physical ether with respect to which objects received their absolute velocities.  However,
the velocities and other values were determined objectively and non-contingently once the frame
of reference was specified, which is the reason Einstein originally intended to call his theory the
theory of invariants.  Similarly, it seems that there may be no logical ether with respect to which
pairs of propositions (or sentences) obtain their a priori relations of inductive support.  But, once
a probability model M is specified (and independently of how that model is interpreted), the
values of � functions defined relative to M are determined objectively and non-contingently (in
precisely the sense Carnap had in mind when he used those terms).

4.2  A Fourth Material Desideratum: Relevance

Consider the following argument:



(P) Fred Fox (who is a male) has been taking birth control pills for the past year.

(C) Fred Fox is not pregnant.

Intuitively (i.e., assuming a probability model M which properly incorporates our intuitively
salient background knowledge about human biology, etc.), PrM(C | P) is very high.  But, do we
want to say that there is a strong evidential relation between P and C?  According to proponents
of (TRV), we should say just that.  This seems wrong, because, intuitively, PrM(C | P) = PrM(C).
That is, PrM(C | P) is high solely because PrM(C) is high, and not because of any evidential
relation between P and C.  This is the same kind of criticism Skyrms (2000) made against the
(NIL) proposal.  And, it is just as compelling here.  The problem here is that P is irrelevant to C.
Plausibly, it seems that if P is going to be counted as providing evidence in favor of C, then P
should raise the probability of C. (See Popper (1954, 1992) and Salmon (1975) for more on this
point.)  This leads to the following fourth material desideratum for �.

(4) �(C, {P1, …, Pn}) should be sensitive to the probabilistic relevance of P1 & … & Pn to C.

In particular, (4) implies that if P1 raises the probability of C1, but P2 lowers the probability of C2,
then �(C1, P1) > �(C2, P2).  This rules-out Pr(C | P1 & … & Pn) as a candidate for �(C, {P1, …,
Pn}), and it is therefore inconsistent with (TRV).  Many non-equivalent probabilistic-relevance
measures of support (or confirmation) satisfying (4) have been proposed and defended in the
philosophical literature.  (See Fitelson (1999, 2001) for surveys and discussion.)

We can combine desiderata (1)–(4) into the following single desideratum (which will be
called “PIL” for “Probabilistic Inductive Logic”). This unified desideratum gives constraints on a
three-place probabilistic confirmation function �(C, {P1, …, Pn}, M), which is the degree to
which {P1, …, Pn} inductively supports C, relative to a specified probability model M = <B,
PrM>.

(PIL) �(C, {P1, …, Pn}, M) is 

maximal and > 0 if {P1, …  ,Pn} entails C 

> 0 if PrM(C | P1 &  …  &  Pn ) >  PrM(C)

0 if PrM(C | P1 &  …  &  Pn ) =  PrM(C)

< 0 if PrM(C | P1 &  …  &  Pn ) <  PrM(C)

minimal and < 0 if {P1, …  ,Pn} entails ~ C

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

To see that any measure satisfying (PIL) will satisfy (1)–(4), note that: (1) the cases of
entailment and refutation are at the extremes of �, with intermediate values of support and
counter-support in between the extremes; (2) the constraints in (PIL) can be stated purely
probabilistically, and �’s values must be determined relative to a probability model M, so any
measure satisfying it must use probability as a central concept in its definition; (3) the measure �
is defined relative to a probability model, and so its values are determined objectively and non-
contingently by the values in the specified model; and, (4)  sensitivity to Pr-relevance is built-in
to the desideratum (PIL).

Interestingly, almost all relevance measures proposed in the confirmation theory
literature fail to satisfy (PIL).  (See Fitelson (2001: §3.2.3) for discussion.)  One historical
measure that does satisfy (PIL) was independently proposed and defended by Kemeny and



Oppenheim (1952) as the correct measure of confirmation (in opposition to Carnap’s (TRV)
�–measures), within a Carnapian framework for logical probability.

�(C, {P1, …, Pn}, M) = 
PrM(P1 &  …  &  Pn |  C) –  PrM(P1 &  …  &  Pn |  ~ C)

PrM(P1 &  …  &  Pn |  C) +  PrM(P1 &  …  &  Pn |  ~ C)

Indeed, of all the historically proposed (probabilistic) measures of degree of confirmation (and
there have been dozens), the above measure is the only measure (up to ordinal equivalence)
which satisfies all four of our material desiderata (there are other measures in the literature that
differ conventionally from, but are ordinally equivalent to, the above measure, e.g., the log-
likelihood ratio — see Fitelson (2001), Good (1985), Heckerman (1988), Kemeny and
Oppenheim (1952), and Schum (1994) for various other virtues of measures in this family).  As
such, our four simple desiderata are sufficient to (nearly uniquely) determine the desired
explicandum � — the degree of inductive strength of an argument.

5   Historical Epilogue on the Relevance of Relevance

In the second edition of Logical Foundations of Probability, Carnap (1962, new preface)
acknowledges that probabilistic relevance is an intuitively compelling desideratum for measures
of inductive support.  This acknowledgement was in response to the trenchant criticisms of
Popper (1954), who was one of the first to urge relevance as a desideratum in this context (see
Michalos (1971) for a thorough discussion of this important debate between Popper and Carnap).
But, instead of embracing relevance measures like Kemeny and Oppenheim’s (1952) measure
(and rewriting much of the first edition of Logical Foundations of Probability), Carnap simply
postulated an ambiguity in the term “confirmation”.  According to Carnap (1962, new preface),
there are two kinds of confirmation: (i) confirmation as firmness and (ii) confirmation as increase
in firmness, where the former is properly explicated using just conditional probability (a là TRV)
and does not require relevance of the premises to the conclusion, while the latter presupposes
that the premises are probabilistically relevant to the conclusion.  Strangely, Carnap (1962, new
preface) does not even mention Kemeny and Oppenheim’s measure (of which he was aware) as a
proper measure of “confirmation as increase in firmness”.  Instead, Carnap suggests for that
purpose a relevance measure which does not satisfy desideratum (1), and so is not even a proper
generalization of deductive entailment.  This puzzling but crucial sequence of events in the
history of inductive logic may explain why relevance-based approaches (like that of Kemeny and
Oppenheim) have never enjoyed as many proponents as The Received View.

�
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