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Philosophy 4310 –- Assignment #3 
 
This assignment is to be turned in at the beginning of class on Thursday, March 9th.  
 
Part I: The Equation 
P(C|A) = P(A → C) 
 
Prove that each of the following holds for any probability function P and any propositions 
A, C where P(A) > 0 (so that P(C|A) is defined) 
 
1) P(C|A) ≤ P(A ⊃ C). 
2a) if P(A) = 1, then P(C|A)  =  P(A ⊃ C) = P(C)  
2b) P(C|A) = 1 if and only if P(A ⊃ C) = 1 
2c) P(C|A)  =  P(A ⊃ C) entails that one of these two cases obtains (that is, entails that 
either P(A) = 1 or P(A ⊃ C) = 1) 
 
Probability Logic: [if you need help, you may want to start reading Bennett, Ch 9 
though you don’t need anything in that chapter for these problems] 
For the material conditional A ⊃ C, call P(C|A) ‘the corresponding conditional 
probability’ 
 
For each of arguments 3-7, say whether they are deductively valid. Now replace any 
material conditionals with the corresponding conditional probability. Now assume that 
the probability of each of the premises is 1. What is the possible range of the probability 
of the conclusion? Next, make the probability of the premises each .9. Now what is the 
possible range of the probability of the conclusion? 
 
3) A ⊃ C, A  ⊢  C 
4) A ⊃ C, C  ⊢  A 
5) C ⊢ A ⊃ C 
6) A ⊃ C  ⊢ (A&B) ⊃ C 
7) A ⊃ (C&B)  ⊢ A ⊃ C 
 
COMMENT: Arguments that preserve high probability are called “probabilistically 
valid” (technically, the uncertainty of the conclusion cannot exceed the uncertainty of the 
premises). As a special case of this, probability 1 works like deductive validity so that 
arguments that preserve truth also preserve probability 1. Arguments are deductively 
valid if and only if they are probabilistically valid. All probabilistically invalid arguments 
are such that the probability of the premises can get arbitrarily close to 1 while the 
probability of the conclusion can get arbitrarily close to 0. 
 
However, if we replace the probability of a material conditionals with the corresponding 
conditional probability, while the ‘probability 1’ property is preserved, probabilistic 
validity in general is not. Some authors claim that these are precisely the arguments that 
show that the material conditional is problematic.  
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Part II: Triviality Proofs involving The Equation 
 
David Lewis proved that modulo a weak assumption, The Equation entails that A and C 
are independent. Two propositions A and C are said to be probabilistically independent if 
P(A&C) = P(A) * P(C).  [You may wish to look at Titelbaum, FBE section 3.2 for a 
discussion of this]. Notice that independence is symmetric, meaning that if A is 
independent of C then C is independent of A. 
 
FACT: Probabilistic independence could just as well be defined as A and C are 
independent if P(C|A) = P(C) or also as P(C|A) = P(C|~A). Prove that these three 
definitions are equivalent by proving each of these biconditionals: 
 
1. Prove that P(A&C) = P(A) * P(C) if and only if P(C|A) = P(C). 
2. Prove that P(A&C) = P(A) * P(C) if and only if P(C|A) = P(C|~A). 
3. Now prove that if A and C are independent, then A and ~C are also independent.  
 
For the rest of Part II, assume that P(A) = 1/3 and P(C) = 1/4 and that A and C are 
independent.  
 
4. Now build the full stochastic truth-table for this probability distribution (fill in the 
probabilities for the four rows of the table). 
 
5. Calculate each of the following and for each conditional probability, find a proposition 
that has that same unconditional probability. For example, if one of these conditional 
probabilities is 1/3, then it equals P(A). If one of these is 2/3, it equals P(~A).  
 
P(A|C) 
P(C|A) 
P(C|~A) 
P(~C|A) 
P(A|A) 
P(A|~A) 
 
While this is a very special case (all of the atomic propositions are independent from each 
other), Alan Hájek proved that this example is not consistent with The Equation holding 
for all propositions nor is any example with a finite number of possible worlds or state-
descriptions (rows on a truth-table). 
 
Hájek’s proof starts but putting all of the ‘possible world’ probabilities in ascending 
order. The possible worlds are the state-descriptions in the stochastic truth-table (so there 
are four of them in this case). Look at Bennett’s description of Hájek’s proof starting on 
page 74 of Bennett. 
 
6. In this example, the p1, p2, p3, p4 referred to by Bennett are the probabilities of the 
four rows of the stochastic truth table (remember to put them in ascending order). List all 
of the possible unconditional probabilities for any proposition that can be stated in this 
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language. HINT: every proposition is either true or false on a given row and so all of the 
probabilities are sums of the probabilities of the rows (a sum of either 0, 1, 2, 3, or 4 of 
the rows). There are 16 non-equivalent propositions with two atoms and so a maximum 
of 16 possible probabilities here though in this case, some of these 16 might be the same.  
 
7. Call A1 the proposition (state-description) which has probability p1, A2 for p2, etc. 
Calculate: 
 
P(A1|~A2) 
P(A1|~A3) 
P(A1|~A4) 
 
COMMENT: Now we know that P(~A2) = 1-P(A2) = 1-p2. Thus P(A1|~A2) = p1/(1-p2) 
and the other two are = p1/(1-p3) and p1/(1-p4) respectively which is how Bennett 
describes the counterexamples. If you did this problem correctly, none of these 
conditional probabilities will be anything on your list of possible unconditional 
probabilities and so you will have proved that P(~A2→A1) ≠ P(A1|~A2),  
P(~A3→A1) ≠  P(A1|~A3), and P(~A4→A1) ≠  P(A1|~A4). Thus The Equation is false. 
 
 
Part III: Gibbardian stand-offs 
Imagine that Alice is playing Bob in the last round of a chess tournament. Neither Charlie 
nor Diane knows whether Alice won this last game. However, Charlie heard from a 
reliable source that the player with the black pieces won the game and so Charlie says, “If 
Alice was black, she won.” Diane didn’t hear that the black player won the game, 
however, she heard from a reliable source that Alice won a few games as white during 
the tournament, however, every time she was black, she lost. So Diane responds to 
Charlie and says, “No, if Alice was black, she lost.” This is an example of what Bennett 
calls “A Gibbardian stand-off.” 
 
The basic logic of the situation seems to indicate that either both sentences are true, both 
are false, or one is true and one is false. On page 94, Bennett very briefly recaps why he 
thinks that none of these three possibilities could be right.  
 
1) For each of these three possibilities, explain in more detail (a paragraph or two each) 
why each of these three cases is problematic.  
 
2) Choose one of the three cases to defend against Bennett’s (and your) attack. 
Alternatively, you may defend the view that both conditionals are neither true nor false 
against the following objection:  
 Objection: Imagine that Edward knows both Charlie and Diane and trusts that 
neither one of them would assert anything without a good reason. After hearing Charlie 
and Diane, Edward is able to properly infer that Alice must not have been black. But how 
could he infer that on the basis of the two conditionals he heard unless they were both 
true?  


