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LIKELIHOOD, MODEL SELECTION, AND THE
DUHEM-QUINE PROBLEM*

The Duhem-Quine problem is usually formulated deductively with
a choice described dichotomously: When the conjunction of a
hypothesis (H) and an auxiliary assumption (A) entails an

observational prediction (O) that fails to come true, should one reject
H or reject A? A more general formulation would be to ask what one
should say when the conjunction (H & A) confers some probability
on O, and instead of considering the two choices just mentioned, the
problem would be to evaluate judgments that are a matter of degree.
For example, if the observational outcome disconfirms the conjunc-
tion (H & A), what determines whether and how much each conjunct
is disconfirmed? Indeed, the negative cast of this question can be
discarded by generalizing further: How does the disconfirmation or
confirmation of the conjunction affect the disconfirmation or confir-
mation of the conjuncts?1 The epistemological holism associated with
Pierre Duhem2 and W.V. Quine3 denies that evidence bearing on
(H & A) can have an impact on H that differs from the impact it has
on A. This holism can take two forms. Nondistributive holism asserts
that only whole conjunctions are confirmed and disconfirmed, never
their constituent conjuncts; distributive holism concedes that evidence

* My thanks to Julian Barbour, Martin Barrett, Richard Creath, John Earman,
Ellery Eells, Branden Fitelson, Malcolm Forster, Michael Friedman, Alan Hájek,
Daniel Hausman, Margaret Moore, John Norton, Michael Stölzner, Peter Turney,
and the editors of this journal for useful suggestions.

1 If the original Duhem-Quine problem concerns a question about acceptance/
rejection, how is the problem described here concerning confirmation/disconfirma-
tion related to that original problem? If decisions about acceptance and rejection
need to include an evaluation of the evidence at hand, the second problem is part
of the first.

2 The Aim and Structure of Physical Theory (Princeton: University Press, 1954).
3 “Two Dogmas of Empiricism,” in From a Logical Point of View (Cambridge: Harvard,

1953), pp. 20–46, and Philosophy of Logic (Englewood Cliffs, NJ: Prentice-Hall, 1970).
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bearing on the conjunction can have an impact on a conjunct, but
insists that the effect on one conjunct must be the same as the effect
on the other.4 Holists grant that hypotheses and auxiliary assumptions
are often treated differently when predictions fail, but claim that it
is nonevidential considerations, such as simplicity or conservatism, that
does the work.5 To refute holism, the challenge is to show how the
evidence can have an effect on hypotheses that differs from its effect
on auxiliary assumptions.

Previous attempts to bring probabilistic tools to bear on the Duhem-
Quine problem have mainly been Bayesian.6 It is intrinsic to this
approach that one must discuss Pr(H �A), Pr(A �H), and the probability
of the observations conditional not just on (H & A) but on (H &
notA) and on (notH & A).7 It is not essential to assign point values

4 Distributive holists may assert that the effects on H and A are qualitatively the
same (that is, that both are confirmed or both are disconfirmed) or, more ambitiously,
that the effects are quantitatively the same (that is, that the degree of confirmation
of H is identical with the degree of confirmation of A). For more on this taxonomy
of holisms, see my “Quine’s Two Dogmas,” Proceedings of the Aristotelian Society, lxxiv
(2000): 237–80.

5 I do not concede that simplicity is always an extra-evidential consideration; the
point here is that this is what holists happen to believe. For discussion, see my
Reconstructing the Past: Parsimony, Evolution, and Inference (Cambridge: MIT, 1988),
and my “Instrumentalism, Parsimony, and the Akaike Framework,” Philosophy of Sci-
ence, lxix (2002): S112–S123.

6 See, for example, J. Dorling, “Bayesian Personalism, the Methodology of Scientific
Research Programs, and Duhem’s Problem,” Studies in the History and Philosophy of
Science, x (1979): 177–87, Colin Howson and Peter Urbach, Scientific Reasoning: The
Bayesian Approach, (La Salle, IL: Open Court, 1989), John Earman, Bayes or Bust?
(Cambridge: MIT, 1992), and Michael Strevens, “A Bayesian Treatment of Auxiliary
Hypotheses,” British Journal for the Philosophy of Science, lii (2001): 515–37. For a
nonBayesian treatment, see Deborah Mayo’s Error and the Growth of Experimental
Knowledge (Chicago: University Press, 1996), which analyzes the Duhem-Quine prob-
lem within the context of frequentist statistics.

7 As a simple example of a Bayesian analysis, let us define the degree of confirmation
that X receives from Y, c[X,Y], as the ratio Pr(X �Y)/Pr(X). So defined, c[X,Y] � 1
when Y positively confirms X and c[X,Y] � 1 when Y disconfirms X. By Bayes’s
theorem, this ratio equals Pr(Y �X)/Pr(Y); thus, c[H, notO] � c[A, notO] if and only
if Pr(notO �H) � Pr(notO �A), which expands to

Pr(notO �H & A)Pr(A �H) � Pr(notO � H & notA)Pr(notA �H) �
Pr(notO �H & A)Pr(H �A) � Pr(notO � notH & A)Pr(notH �A).

Note the occurrence of Pr(A �H) and of Pr(H �A) in this expression. If we assume
that H and A are probabilistically independent, the inequality reduces to

Pr(notO �H & A)Pr(A) � Pr(notO � H & notA)Pr(notA) �
Pr(notO �H & A)Pr(H) � Pr(notO � notH & A)Pr(notH).

Notice the prior probabilities of A and of H. I do not mean to beg questions here about
the proper definition of degree of confirmation, on which see Branden Fitelson,
“The Plurality of Bayesian Measures of Confirmation and the Problem of Measure
Sensitivity,” Philosophy of Science, lxvi (1999): S362–S378. The point is just to identify
the kinds of quantities that a Bayesian analysis must evaluate.
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to these quantities; the formal treatments require only that value
ranges or inequalities among these quantities be provided. The prob-
lem with this approach is that these quantities are often difficult to
interpret objectively. What is the probability of Newton’s theory if there
are seven planets? What is the probability of there being seven planets,
if Newton’s theory is true? And what is the probability that the orbit
of Uranus will have a certain shape, if Newton’s theory is false and
there are seven planets? It does no good to treat these probabilities as
subjective degrees of belief. This is unsatisfactory because a subjective
interpretation has the consequence that one’s “solution” to the prob-
lem lacks normative force—one has offered no reason to think that
disconfirmation should be assigned more to one conjunct than to the
other.8 In other words, Bayesianism in the context of the Duhem-
Quine problem encounters the same limitations that Bayesianism
often confronts in other settings.

In what follows I will discuss an example of the Duhem-Quine
problem in which Pr(H �A), Pr(A � H), and Pr(O � �H & �A) (where H
is the hypothesis, A the auxiliary assumptions, and O the observational
prediction) can be construed objectively; however, only some of those
quantities are relevant to the analysis that I provide. The example
involves medical diagnosis. The goal is to test the hypothesis that
someone has tuberculosis; the auxiliary assumptions describe the er-
ror characteristics of the test procedure. Although it can make sense
to talk about the objective probability that someone (randomly drawn
from a given population) has tuberculosis and it also can make sense
to talk about the objective probability that a test procedure has a
certain set of error characteristics, neither of these quantities will
enter into the analysis. The analysis proceeds entirely via likelihoods;
what one needs to consider is just the probability of the observations
conditional on four conjunctions of the form (�H & �A).9 It is a
special feature of the example that all four of these conjunctions are
simple statistical hypotheses in the technical sense that each unambigu-

Another Bayesian approach would be to compare, not the change in probability
that O induces in H with the change it induces in A, but the absolute values of
Pr(H �O) and Pr(A �O). Bayes’s Theorem entails that Pr(H �O) � Pr(A �O) if and only
if Pr(O �H)Pr(H) � Pr(O �A)Pr(A). Prior probabilities occur in this expression, and
Pr(H �A) and Pr(A �H) are involved as well, since Pr(O �H) � Pr(O � H & A)Pr(A �H) �
Pr(O � H & notA)Pr(notA � H) and Pr(O �A) � Pr(O � H & A)Pr(H �A) � Pr(O �
notH & A)Pr(notH �A).

8 See Earman (op. cit.).
9 In what follows, I use “likelihood” and “likely” in this technical sense—the likeli-

hood of (H & A) with respect to the observation O, is Pr(O � H & A), not Pr(H & A � O).
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ously confers a probability on the observations.10 After describing how
the likelihood concept applies to the example concerning medical
diagnosis, I will show how similar patterns can arise in the context of a
second inferential framework—that of H. Akaike’s criterion of model
selection;11 this time the example will involve phylogenetic inference.

i. an example and its likelihood analysis
Suppose you want to find out whether someone, whom I will call
“Newman,” has tuberculosis. To do this, you need to use a tuberculosis
test. But what makes something a tuberculosis test? The basic idea is
that tuberculosis tests are input-output devices. A sample drawn from
the subject (for example, of blood or saliva) is put into a black box,
which then goes into one of two states, which we call “positive” and
“negative.” A good tuberculosis test has small error probabilities. Er-
rors, of course, come in two forms—the test can produce false positives
and false negatives. Table 1 represents the four relevant conditional
probabilities that characterize a tuberculosis test; each has the form
Pr(� test outcome � � tuberculosis). It is important to understand
these so-called error probabilities in the right way. For example, e1 is
not the probability that someone with a negative test outcome has
tuberculosis; rather, it is the probability that someone with tuberculo-
sis will have a negative test outcome. The relevant probabilities are,
so to speak, world-to-device, not device-to-world.12 It might be less
misleading to say that these probabilities measure the test’s sensitivity;
they do not tell you how probable it is that a positive or a negative
result is mistaken.13

10 Although Mayo (op. cit.) is no friend of likelihood, her point that a good test
of a hypothesis H may fail to be a good test of the auxiliary assumption A is congenial
to the likelihood analysis I will describe.

11 “Information Theory as an Extension of the Maximum Likelihood Principle,”
in B. Petrov and F. Csaki, eds., Second International Symposium on Information Theory
(Budapest: Akademiai Kiado, 1973), pp. 267–81.

12 Here I adopt terminology from Hartry Field, who talks about world-to-head
and head-to-world reliability. See his “‘Narrow’ Aspects of Intentionality and the
Information-theoretic Approach to Content,” in Enrique Villanueva, ed., Information,
Semantics, and Epistemology (New York: Blackwell, 1990), pp. 102–16.

13 If our interest in using tuberculosis tests is to find out whether someone probably
has tuberculosis, why are error characteristics defined in terms of probabilities of
the form Pr(� test outcome � � tuberculosis), rather than in terms of probabilities
of the form Pr(� tuberculosis � � test outcome)? The reason is that the latter
quantities depend on how rare or common tuberculosis is, but the former do not.
It is a curious fact about our universe that probabilities of the form Pr(effect�cause)
are often time-translationally invariant, whereas probabilities of the form Pr(cause�
effect) rarely are. For discussion, see my “Temporally Oriented Laws,” Synthese, xciv
(1993): 171–89.
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TABLE 1

S has tuberculosis S does not have tuberculosis

� test result 1-e1 e 2

� test result e1 1-e 2

How would you go about determining what the error characteristics
are of a tuberculosis test? One obvious procedure is to assemble
people whom you know have tuberculosis and people whom you know
do not, and give each person the test. Suppose that a company in
Madison, which is interested in developing a test kit for tuberculosis,
does this, with 1000 people in each group. The data the company
obtains are given in Table 2. How would you use these frequency data
to infer the relevant error probabilities? The standard procedure is
to use maximum likelihood estimation; you find the estimate that maxi-
mizes the probability of the observations. The estimated probabilities
for the Madison test procedure are therefore:

(Madison) Pr(� test result � S has tuberculosis) � 997/1000
Pr(� test result � S has no tuberculosis) �2/1000.

Given these probabilities, the Law of Likelihood describes how a per-
son’s test result should be interpreted. If the test outcome is positive,
this result favors the hypothesis (H1) that he or she has tuberculosis
over the hypothesis (H2) that he or she does not.14 A negative test result
has the opposite evidential meaning. The strength of the differential
support that a test outcome provides is usually measured by the likeli-
hood ratio, which has a value of 997/2 favoring H1 if the result is
positive and a value of 998/3 favoring H2 if it is negative.15 These hefty
values indicate that the Madison test can be said to be a good test for
tuberculosis. The test provides a lot of information, regardless of
the outcome.

TABLE 2

MADISON 1000 with Tuberculosis 1000 with no Tuberculosis

� test result 997 2

� test result 3 998

14 See Ian Hacking, The Logic of Statistical Inference (New York: Cambridge, 1965);
Anthony Edwards, Likelihood (New York: Cambridge, 1972); and Richard Royall,
Statistical Evidence: A Likelihood Paradigm (Boca Raton, FL: Chapman and Hall, 1997).

15 Here and in what follows I rely on likelihood ratios to measure strength of
evidence. The warning in Fitelson (op. cit.) that epistemological conclusions may be
sensitive to choice of measure is relevant here.
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In addition to the Madison company I have just described, suppose
there is a company in Middleton that has been involved in the same
project. They also want to develop a tuberculosis test kit, so they
also try out their procedure on 1000 people whom they know have
tuberculosis and 1000 people whom they know do not. The data they
obtain on their kit are given in Table 3. They then use maximum
likelihood estimation to estimate the error probabilities of their test:

(Middleton) Pr(� test result � S has tuberculosis) � 990/1000
Pr(� test result � S has no tuberculosis) �5/1000.

Notice that the Middleton device is inferred to have slightly larger
error probabilities, both positive and negative, than the Madison test.
Still, it is a pretty good test. If someone has a positive result on the
Middleton test, the likelihood ratio of the two hypotheses H1 (S has
tuberculosis) and H2 (S does not have tuberculosis) is 990/5 favoring
H1, and a negative outcome engenders a likelihood ratio of 995/10
favoring H2.

TABLE 3

MIDDLETON 1000 with Tuberculosis 1000 with no Tuberculosis

� test result 990 5

� test result 10 995

We now can return to the original problem of finding out whether
Newman has tuberculosis. I introduced the two tuberculosis tests to
give this problem a Duhemian twist. Duhem emphasized that physical
theories do not entail observational predictions all by themselves,
but do so only when conjoined with auxiliary assumptions. Duhem’s
insight is preserved in the example at hand, even though the relation-
ships are probabilistic, not deductive. Suppose we give Newman a
tuberculosis test and obtain a positive result. The probability of ob-
taining that result depends both on whether Newman has tuberculosis
and on whether we used a test kit from Madison or one from Middle-
ton. The four probabilities are represented in Table 4.

TABLE 4

Possible Auxiliary Assumptions

A1: Madison A2: Middleton

H1: Newman has tuberculosis 997/1000 � 990/1000
Hypotheses ∨ ∨

H2: Newman does not have tuberculosis 2/1000 � 5/1000
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Notice that there is a qualitative asymmetry between what the observa-
tional outcome says about the hypotheses H1 and H2 and what it says
about the auxiliary assumptions A1 and A2. Newman’s positive test
result renders H1 more likely than H2, regardless of whether A1 or A2

is true. However, whether A1 is more likely than A2 depends on which
of the hypotheses is true, and this, I am assuming, is something we
do not already know. Of course, if we do already know whether New-
man has tuberculosis, then the observed test result does provide infor-
mation about whether the test kit came from Madison or from Middle-
ton. However, the information provided is exceedingly modest. If
Newman has tuberculosis, the positive test outcome slightly favors A1

over A2; the likelihood ratio here is only 997/990. Similarly, if Newman
does not have tuberculosis, then the positive result favors A2 over A1,
with a likelihood ratio of 5/2. On the other hand, if we not only do
not know whether Newman has tuberculosis but cannot even assign
a probability to this being the case, the test result tells us nothing
about the provenance of the test kit.

If the data and the ensuing maximum likelihood estimates of error
probabilities from either Madison or Middleton had been different,
it could easily have turned out that there is no qualitative asymmetry
between the observation’s impact on the hypotheses and its impact
on the auxiliary assumptions. That is, it is possible for the observation
to provide information about both. However, this does not mean that
the amount of information provided must be the same; there still can
be a quantitative asymmetry, even if there is no qualitative asymmetry.
By changing the probability in the lower-right cell in Table 4, we
obtain Table 5. Now Newman’s positive test result favors H1 over H2,
regardless of which auxiliary assumption is true, and it also favors A1

over A2, regardless of which hypothesis is true. However, the observa-
tion provides much more information about whether Newman has
tuberculosis than it does about whether the test kit came from Madison
or Middleton. With respect to the hypotheses, the ratio is either 997/2
or 990/1, depending on which test procedure was used. With respect
to the auxiliary assumptions, the ratio is either 997/990 or 2/1, de-
pending on whether Newman has tuberculosis. Note that 997/2 and
990/1 are both much bigger than 997/990 and 2/1. In this example,
the observation provides more information about the hypotheses than
it does about the auxiliary assumptions. Of course, the reverse situa-
tion can also obtain and it also is possible for the situation to be
perfectly symmetrical; two examples of symmetry will be discussed at
the end of the paper.
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TABLE 5

Possible Auxiliary Assumptions

A1: Madison A2: Middleton

H1: Newman has tuberculosis 997/1000 � 990/1000
Hypotheses ∨ ∨

H2: Newman does not have tuberculosis 2/1000 � 1/1000

When a conjunction (H & A) makes a prediction that neither con-
junct makes on its own, epistemological holism says that it is never
possible for the outcome to have an evidential significance for H that
differs from the significance it has for A. The generality of this thesis
means that just one counterexample is enough to refute it. I claim
that the example just described performs that function. Let H be the
hypothesis that Newman does not have tuberculosis and let A be
the hypothesis that one is using the Madison test procedure. The
conjunction (H & A) predicts that the test result will be negative in
the sense that it confers on that outcome a probability of 998/1000.
But suppose the test comes out positive. To see what this outcome
means for H and what it means for A, we need to know what the
alternatives are to each. With the alternatives as described, the test
result can have a bearing on the hypotheses that differs fundamentally
from the bearing it has on the auxiliary assumptions. Both qualitative
and quantitative asymmetries are possible. Epistemological holism
is false.

ii. tweaking the example
The example just described, in which you do not know beforehand
whether Newman has tuberculosis and also do not know which tuber-
culosis test kit you are using, is somewhat artificial. Scientists typically
know the provenance of the test kits they use as well as their estimated
error probabilities. But even in this more realistic setting, there still
is room for Duhemian puzzlement. Suppose we know we are using the
Madison test kit. However, we recognize that the error probabilities
associated with this test kit are merely estimates—we have no certainty
that the estimated values are exactly right. Again we give the test to
Newman and again obtain a positive result. Does that outcome provide
information about whether Newman has tuberculosis and does it also
provide information about the test procedure’s error characteristics?
If so, does the outcome provide more information about one of these
than it does about the other?

It might seem intuitive to say that Newman’s test outcome provides
zero information about the error characteristics of the test procedure.
After all, Newman is quite unlike the 2000 subjects who were used to
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calibrate the test; we have no independent knowledge as to whether
he has the disease. Of course, if we knew that he probably has the
disease, or that he probably does not, that would tell us whether his
positive test result is probably a true positive or is probably a false positive,
and that would lead us to modify slightly our estimates of the test’s
error characteristics. But suppose we do not know even that. How,
then, can the test result provide any information at all about the test’s
error characteristics?

Newman’s test outcome could be a false positive or it could be a
true positive. Let us consider these possibilities in turn. If Newman’s
test result is a true positive, we should add this result to the 2000
individuals already studied and change our estimate of the test’s error
characteristics to

Pr(� test result � S has tuberculosis) � 998/1001
Pr(� test result � S has no tuberculosis) �2/1000.

On the other hand, if Newman’s test result is a false positive, we
should revise our estimate of the test’s error characteristics as follows:

Pr(� test result � S has tuberculosis) � 997/1000
Pr(� test result � S has no tuberculosis) �3/1001.

Of course, we do not know whether Newman’s result is a false positive
or a true positive, so we do not know which pair of estimates we should
use to characterize the procedure’s error characteristics. However, this
uncertainty does not prevent us from formulating a pair of condi-
tional estimates:

(New Madison) If Newman has tuberculosis, then Pr(� test result � S
has tuberculosis) � 998/1001 and Pr(� test result � S
has no tuberculosis) � 2/1000.

If Newman does not have tuberculosis, then Pr(� test
result � S has tuberculosis) � 997/1000 and Pr(� test
result � S has no tuberculosis) � 3/1001.

We now can ask whether there is a difference in likelihood between
the old estimates (Madison) or the new, conditional, estimates (New
Madison) that were obtained by taking account of Newman’s positive
test result.

Table 6 summarizes the situation; cell entries represent the proba-
bility of Newman’s positive test result, conditional on different combi-
nations of hypotheses and auxiliary assumptions. Notice first that
there is a qualitative symmetry between what the observation says about
the hypotheses and what it says about the auxiliary assumptions. New-
man’s positive test result renders H1 more likely than H2, regardless
of which auxiliary assumption is true, and the result also favors (New
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Madison) over (Madison) regardless of which hypothesis is true.16

However, there is a quantitative asymmetry. The observation is very
informative about whether Newman has tuberculosis; 997/2 and
998/3 are both large. In contrast, the observation is only modestly
informative about the choice between the auxiliary assumptions; the
ratios are approximately 998/997 and 3/2, and these are both rather
small. Why does Newman’s test result have such a negligible impact
on the estimates of the test’s error characteristics? The reason is that
Newman is just one person out of 2001. Had we initially estimated
the error probabilities by using just 200 subjects, or 20, or 2, Newman
would have mattered more.

TABLE 6

Possible Auxiliary Assumptions

Madison New Madison

H1: Newman has tuberculosis 997/1000 � 998/1001
Hypotheses ∨ ∨

H2: Newman does not have tuberculosis 2/1000 � 3/1001

It may seem odd that I even consider (New Madison). If estimates
of the error characteristics of a test procedure must be based solely
on frequency data, then speculations about what our maximum likeli-
hood estimates would be if we knew whether Newman has tuberculosis
are irrelevant. This sensible attitude flies in the face of epistemological
holism—it entails that Newman’s test outcome provides considerable
evidence about whether he has tuberculosis and zero information
about the error characteristics of the test procedure. If this were
correct, there would be a qualitative as well as a quantitative asymme-
try. The analysis in which (Madison) and (New Madison) are com-
pared comes close to this result, but does not coincide with it exactly.
I argued that the evidence slightly favors (New Madison) over (Madi-
son), not that the observation is literally informationless. In terms of
the larger picture of seeing what is wrong with epistemological holism,
this difference does not matter. But in terms of the specifics of likeli-
hood reasoning, it does.

iii. significance of the tweaked example
This last example illustrates a very general fact about the calibration
of measurement instruments and the validation of test procedures in

16 (Madison) has a lower likelihood than (New Madison) in each row, since a/b �
(a�1)/(b�1), if 0�a�b.
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science. The typical situation is that the error characteristics of a test
procedure are first ascertained and then the procedure is applied to
new individuals. One usually does not already know whether these
new individuals have the condition being tested (otherwise, why apply
the test?); indeed, one often does not even know whether the new
individuals probably have the condition. Many of us have opinions
about the approximate frequency of tuberculosis in this or that popu-
lation; if we were prepared to assume that Newman was drawn at
random from such a population, we would be entitled to talk about
the prior probability that he has tuberculosis. Many scientific tests
are not like this. Galileo gauged the reliability of his telescope by
training it on various terrestrial objects. He used it to identify the flags
on ships coming over the horizon and the inscriptions on distant
buildings; in all these cases it was possible to determine independently
whether the reports were correct.17 Galileo then looked through his
telescope at Jupiter ; his observations provided strong evidence that
Jupiter has moons, but little or no information about the telescope’s
error characteristics. Understanding this asymmetry does not require
that one assign a prior probability to Jupiter’s having moons. This is
fortunate, since Galileo was in no position to assign an objective prior
probability to that proposition.18

There is a sense in which the likelihood analysis of the tuberculosis
example is nonBayesian, but this is not because likelihood is an idea
that Bayesianism abhors. On the contrary—likelihood is a fundamen-
tal quantity in Bayes’s theorem. What I mean is that the analysis
does not use the full-blown resources that Bayesianism assumes are
available. First, prior and posterior probabilities play no role. Second,
a likelihoodist will be happy to compare the likelihoods of two simple
statistical hypotheses (S1 and S2), but often is loath to compare the
likelihoods of a simple hypothesis (S1) and its negation (notS1) when

17 See Philip Kitcher’s The Advancement of Science: Science without Legend, Objectivity
without Illusions (New York: Oxford, 1993), pp. 228–33, and his “Real Realism: The
Galilean Strategy,” Philosophical Review, cx (2001): 151–98.

18 Galileo estimated the error characteristics of his telescope by using it in problems
that involved relatively small terrestrial distances; he then applied this detection
device to an astronomical object that was much farther away. There certainly was
room to wonder, at the time, how trustworthy this bold extrapolation was. My point
here is not to comment on the legitimacy of Galileo’s inference, but to note how
often scientists use the protocol I described in connection with the tuberculosis test.
The question of how the behavior of the measuring device should be parameterized
(for example, a single set of error characteristics for sightings of all objects, or two
such sets—one for objects that are near and another for objects that are far away),
as opposed to the question of how values for parameters should be estimated, will be
discussed later.
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that negation is composite. Suppose notS1 is equivalent to a disjunction
of simple hypotheses (S2 or S3 or...or Sn). If so, the likelihood of notS1

will be a weighted average of the likelihoods of S2, S3,...Sn, where the
weighting term has the form Pr(Si � notS1). This weighting term often
lacks an objective interpretation. If Newton’s theory is false, what is
the probability of each of the theory’s specific alternatives? Thus the
problem with priors often recurs as a problem for likelihoods.19 It
is a very special property of the tuberculosis example that the two
hypotheses considered are exhaustive (assuming that Newman exists)
and the four conjunctions are simple.20

The relations of qualitative and quantitative asymmetry that I have
described are purely formal, and therefore do not depend on one’s
interpretation of probability. Still, the question may be asked of what
interpretation of probability I am using when I say that the likelihoods
evaluated in the example concerning Newman’s tuberculosis are “ob-
jective.” Clearly, I cannot think of probabilities as subjective degrees
of belief. But neither do I wish to endorse the objective interpreta-
tions—actual relative frequencies, hypothetical relative frequencies,
propensities—now on offer. My preference is the no-theory theory of
probability, which rejects the need for a reductive analysis of what
probability statements mean. Probability is a theoretical quantity. It
obeys the axioms of probability and it bears nondeductive inferential
relations to observed relative frequencies. Probability, like other theo-
retical magnitudes, cannot be reduced to observations, nor does it
need to be.21

This brings us to the question of how general the treatment pro-
vided here of Newman’s tuberculosis test can be said to be. Does the
structure of this quotidian example apply to all situations in which
the Duhem-Quine problem arises? There are two types of situation
in which it does not; I will describe one of them now and postpone
the other until the next section. Scientists sometimes react to the
predictive failure of a conjunction by formulating an alternative to

19 See Richard W. Miller, Fact and Method (Princeton: University Press, 1999), and
my “Bayesianism: Its Scope and Limits,” in Richard Swinburne, ed., Bayes’s Theorem
(New York: Oxford, 2002), pp. 21–38.

20 I have emphasized how the likelihood approach allows one to avoid considering
prior probabilities. However, there is a quantity that the likelihood approach requires
one to consider, that Bayesian treatments (of the kind described in footnote 7)
do not. When all four conjunctions of the form (�H & �A) are simple statistical
hypotheses, the likelihood approach will consider the quantity Pr(O � notH & notA).

21 See Isaac Levi and Sidney Morgenbesser, “Belief and Disposition,” American
Philosophical Quarterly, i (1964): 221–32, and Levi, Gambling with Truth (New York:
Knopf, 1967).
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one conjunct without bothering to formulate an alternative to the
other. For example, when John Crouch Adams and Jean Joseph Le
Verrier tried to account for the fact that the conjunction of Newton’s
theory and the assumption that there are seven planets generates an
inaccurate prediction of Uranus’s orbit, they did not try to invent
an alternative to Newton’s theory.22 Rather, they set their minds to
constructing a specific alternative to the auxiliary assumption, and
the result was the prediction and confirmation of a new planet, which
we now call Neptune.23 In this case, the comparison was between
two conjunctions—(Newton & seven planets) and (Newton & eight
planets)—first using the old observations of Uranus’s orbit, and then
assembling new observations drawn from pointing telescopes in the
right direction.24 This one-sided response to observational anomaly
also occurs when the auxiliary assumptions include propositions of
pure mathematics. It is entirely customary for alternative empirical
hypotheses to draw on the same body of pure mathematics.25 In such
cases, the observations are used to test (H1 & A) against (H2 & A),
but are not used to test the auxiliary assumption A against an alterna-
tive, since none was formulated in the first place. Cases of this sort
involve epistemological asymmetry “by default,” so to speak; they
therefore differ from the case of Newman and his tuberculosis test
in which alternative hypotheses and alternative auxiliary assumptions
are both on the table for consideration.

Even so, the likelihood concept throws light on cases in which
scientists decline to construct a new theory (or decline to construct
a new set of auxiliary assumptions). They often do so because they

22 Although Newtonian theory does not use the concept of probability, it still is a
mistake to think of the theory plus auxiliary assumptions as deductively entailing a
prediction about what one should observe concerning Uranus’s orbit. The reason
is that the observation procedures used are subject to error, and these error character-
istics need to be modeled probabilistically, just as was true for Newman’s tuberculo-
sis test.

23 W.M. Smart, “John Crouch Adams and the Discovery of Neptune,” Occasional
Notes of the Royal Astronomical Society, xi (1947): 33–88.

24 Adams and Le Verrier were able to accommodate the observed orbit of Uranus
within the Newtonian framework by postulating an eighth planet, but did Uranus’s
orbit confirm the hypothesis that there is an eighth planet? It is tempting to answer
this question in the negative and to insist that it was only the observation of Neptune
that provided evidence. The broad epistemological question at issue here is whether
using an observation to construct a hypothesis means that the observation fails to
provide evidence for the hypothesis. See Christopher Hitchcock and Elliott Sober,
“Prediction, Accommodation, and the Problem of Overfitting,” British Journal for the
Philosophy of Science, lv (2004): 1–34, for discussion.

25 See my “Indispensability and Mathematics,” Philosophical Review, cii (1993):
35–57.



234 the journal of philosophy

expect that the new construction would have low likelihood, relative
to all the evidence. Newtonian theory exhibited excellent fit to lots
of other data; it would have been a very tall order to construct an
alternative theory that does a better job of handling the data on
Uranus while still having high likelihood relative to these other obser-
vations. The assumption that there are just seven planets was much
less enmeshed with other data sets, so it made sense for Adams and
Le Verrier to have held on to Newtonian theory while attempting to
revise the auxiliary assumption about the number of planets.26 As is
well known, the same strategy met with failure when applied to the
problem of explaining Mercury’s orbit. Einstein’s general theory of
relativity was able to solve the problem precisely because it fit the
data that Newton’s theory also fit, while fitting the data on Mercury
better. The old auxiliary assumption, that there is no planet between
Mercury and the Sun, turned out to be right all along, notwithstanding
the fact that Le Verrier and others considered the possibility that an
as-yet unobserved planet (Vulcan) is perturbing Mercury’s orbit.27

Must a solution to the Duhem-Quine problem give scientists advice
on whether they should formulate an alternative to the hypothesis H
or an alternative to the auxiliary assumptions A when the conjunction
(H & A) generates a failed prediction? I do not think so. Epistemology
does not have the burden of predicting that Uranus’s orbit should
be handled in one way while Mercury’s should be handled in another.
It took an Einstein (namely, the Einstein) to discover this; there was
nothing in the anomalous data and their relation to Newtonian theory
that indicated what the facts would turn out to be. It is perhaps more
reasonable for philosophy in this instance to remain on one side of
the divide between the context of discovery and the context of justification.28

The likelihood analysis describes how alternatives should be compared
once they are formulated, not whether they are worth constructing
in the first place.29

26 This point concerning “enmeshment with other data sets” is an appeal to observa-
tional evidence, not to the extra-evidential considerations that holists think are es-
sential.

27 Whereas the Adams/Le Verrier approach to the orbit of Uranus involved “asym-
metry by default,” this was not the case with respect to later discussion of the anoma-
lous perihelion of Mercury, in that modifications of the auxiliary assumptions and
of Newtonian theory were both developed. See N. Roseveare, Mercury’s Perihelion from
Le Verrier to Einstein (New York: Oxford, 1982), and John Earman and Michel Janssen,
“Einstein’s Explanation of the Motion of Mercury’s Perihelion,” in Earman, Janssen,
and John D. Norton, eds., The Attraction of Gravitation: New Studies in the History of
General Relativity (Boston: Birkhäuser, 1993), pp. 129–72.

28 See Hans Reichenbach, Experience and Prediction (Chicago: University Press,
1938).

29 The distinction between context of discovery and context of justification is distinct
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In discussing Newman’s test result, the hypotheses considered were
exhaustive (assuming that Newman exists), but the range of alterna-
tive auxiliary assumptions was narrowly circumscribed. In both ver-
sions of the problem, I assumed that applications of a tuberculosis
test are independent and identically distributed; the same pair of
error probabilities applies each time someone takes a test and the
error probabilities that apply when one person takes the test are
independent of what the outcomes happened to be when others did
so. But surely this too is a background assumption that is up for grabs;
it is not immune from revision in the context of the Duhem-Quine
problem. The different auxiliary assumptions we considered disagree
about the values of two parameters, but they agree on how the problem
should be parameterized. It is perfectly legitimate to consider alternative
models of how the test procedure works, where different models param-
eterize the problem in different ways. This takes us to our next topic.

iv. model selection
Although the likelihood approach is enough to show that epistemolog-
ical holism is false, I do not claim that it is able to handle all instances
of the Duhem-Quine problem. The main limitation concerns the
treatment of composite (nonsimple) statistical hypotheses whose like-
lihoods cannot be interpreted objectively.30 For example, consider
the hypothesis that two physical quantities—say, the temperature and
pressure in a closed chamber of gas—are related linearly. Although
a specific straight-line hypothesis (for example, P � 4 � 3T � U,
where U is an error distribution) confers a probability on a given
value for pressure, given a value for temperature, it is more puzzling
how one should think about the likelihood of the weaker claim that
the relationship is linear (that is, that there exist values of a and b
such that P � a � bT � U). This is because the likelihood of the
hypothesis of linearity (LIN) is a weighted average of the likelihoods
of all possible straight lines (L1, L2,...):31

Pr(Data � LIN) � �
i

Pr(Data � Li) Pr(Li � LIN).

If one has no objective basis for saying how probable this or that
straight line is, conditional on (LIN), one will not be able to treat
the likelihood of (LIN) as an objective quantity.

from the distinction between rules for accepting and rejecting hypotheses and rules for
saying which hypotheses are better supported by the evidence. I draw the latter distinction
within the context of justification.

30 See M. Forster, “Bayes and Bust: Simplicity as a Problem for a Probabilist’s
Approach to Confirmation,” British Journal for the Philosophy of Science, xlvi (1995):
399–429, and my “Bayesianism: Its Scope and Limits” (op. cit.).

31 As an expository convenience, I represent the average likelihood of (LIN) as a
discrete summation, not as a continuous integration.
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The term “model” is used in the statistics literature on model selec-
tion to refer to hypotheses that contain at least one adjustable parame-
ter. The hypothesis of linearity is a model in this sense, but specific
straight-line hypotheses are not. Perhaps the most widely used model
selection criterion is the Akaike information criterion (AIC), pro-
posed by Akaike (op. cit.).32 AIC is nonBayesian; the goal is not to
compute the probability of a model or its likelihood. Rather, AIC
aims to provide an estimate of the model’s predictive accuracy.33 But how
can (LIN), as opposed to a specific straight-line hypothesis, provide a
prediction (either accurate or inaccurate) about the gas’s temperature
when the gas is raised to a particular temperature? The answer is that
the model must first be fitted to a set of old data; the parameters a
and b are estimated from that data, using the method of maximum
likelihood estimation. By substituting these estimates for the adjust-
able parameters, (LIN) is replaced with the specific straight-line hy-
pothesis L(LIN); this is the specific straight line that renders the old
data maximally probable. One then draws a new data set from the
chamber of gas and determines how well L(LIN) predicts this new
data. The average performance of (LIN) in this prediction task—first
being fitted to old data, then seeing how well the fitted model predicts
new data—defines the model’s predictive accuracy. Estimating the
predictive accuracy of models is the goal; the next question is how
we should go about attaining that goal. If we have just one data set
at hand, how are we to use this evidence to judge how predictively
accurate a model is?

An important lesson that scientists absorb from working with models
is that making a model too complex will reduce its predictive accuracy.
It is easy to get a model to fit the available data by making it sufficiently
complex, but the price is often that the fitted model does a poor job
predicting new data. This is not a brute fact in the life experience of
scientists; rather, Akaike provided a mathematical framework that
helps explain why overfitting tends to reduce predictive accuracy.
Using some very general assumptions, Akaike proved a result concern-
ing how the predictive accuracy of a model can be estimated. He
showed that an unbiased estimate of a model’s predictive accuracy
can be obtained by looking at two of its properties—how well it fits

32 See also Y. Sakamoto, M. Ishiguro, and G. Kitagawa, Akaike Information Criterion
Statistics (New York: Springer, 1986); and Kenneth P. Burnham and David R. Ander-
son, Model Selection and Inference: A Practical Information-Theoretic Approach (New York:
Springer, 1998).

33 See Forster and Sober, “How to Tell When Simpler, More Unified, or Less Ad Hoc
Theories Will Provide More Accurate Predictions,” British Journal for the Philosophy of
Science, xlv (1994): 1–36.
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the data at hand, and how complex it is (where complexity is measured
by the number of adjustable parameters the model contains). Akaike’s
theorem is the basis for AIC, which assigns a score to a model that
reflects both its fit-to-data and its simplicity.34 By comparing the AIC
scores of different models, one can estimate which models will make
more accurate predictions.

As an example of a model selection problem in which models can
be viewed as conjunctions (and so the Duhem-Quine problem can
arise), let us consider the task of phylogenetic inference.35 The goal is
to evaluate the plausibility of different phylogenetic trees. Are human
beings more closely related to chimps than they are to gorillas, or is
the tree topology something different? There are three bifurcating
trees that need to be considered—(HC)G, H(CG), and (HG)C—but
none of these confers a probability on the data until some model of
the evolutionary process is provided. There are several process models
to consider. In the context of molecular evolution, the simplest model
is that of T. Jukes and C. Cantor,36 which assumes that each of the
four nucleotides has the same probability per unit time of chang-
ing into any of the others. More complex models, such as the one
due to M. Kimura,37 allow different changes to have different prob-
abilities.38 When a tree topology is conjoined with a process model,
its adjustable parameters may be estimated from the data, and the
AIC score of the conjunction may then be computed, as depicted in
Table 7. Nothing prevents these cell entries from exhibiting the same
asymmetries we saw in the likelihood analysis of Newman’s tuberculo-
sis test. The data might favor one tree topology over the other, regard-
less of which process model is used, but fail to provide any robust

34 Does AIC play into the hands of holism by invoking simplicity? I would say not,
in that the justification for AIC depends on empirical assumptions (though ones of
great generality). In addition, I will be using AIC only as an example of a model
selection criterion; cross-validation is another such criterion, and it involves no appeal
to simplicity. As it happens, take-one-out cross-validation is asymptotically equivalent
with AIC. See M. Stone’s “Cross-validatory Choice and Assessment of Statistical Predic-
tions (with Discussion),” Journal of the Royal Statistical Society, B xxxvi (1974): 111–47,
and his “An Asymptotic Equivalence of Choice of Model by Cross-validation and
Akaike’s Criterion,” Journal of the Royal Statistical Society, B xxxix (1977): 44–47.

35 See my “The Contest between Likelihood and Parsimony,” Systematic Biology
(2004, forthcoming).

36 “Evolution of Protein Molecules,” in H. Munro, ed., Mammalian Protein Metabolism
(New York: Academic, 1969), pp. 21–132.

37 “A Simple Method for Estimating Evolutionary Rates of Base Substitutions
through Comparative Studies of Nucleotide Sequences,” Journal of Molecular Evolution,
xvi (1980): 111–20.

38 For a survey of the different models now on offer, see Roderic Page and Edward
Holmes, Molecular Evolution: Phylogenetic Approach (Malden, MA: Blackwell, 1998),
pp. 148–62.
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indication of which process model is better. It also is possible for the
data to provide information about both tree topology and process
model while providing more information about one than it does about
the other. There is nothing special about AIC in this regard; all
model selection criteria can generate both qualitative and quantitative
asymmetries. This shows that the solution to the Duhem-Quine prob-
lem that I am proposing does not require a commitment to likelihood
as the one true way to interpret evidence.

TABLE 7

Process Models

Jukes-Cantor Kimura

Tree topologies (HC )G AIC1 AIC2

H(CG) AIC3 AIC4

v. concluding comments
How is the likelihood analysis described here related to a deductivist
formulation of the Duhem-Quine problem in which we recognize
that there are three choices (and not just two)—we can reject H1, re-
ject A1, or both? If the conjunction (H1 & A1) entails O, then Pr(notO �
H1 & A1) � 0. The four likelihoods we need to consider, relative to
the observation (notO), are shown in Table 8. Of course, the Law of
Likelihood does not make recommendations about acceptance and
rejection, but merely describes the differential support that the evi-
dence provides. However, if acceptance and rejection require an evalu-
ation of evidence, then the relationship of these four likelihoods is
relevant to deciding what to accept and what to reject. If H2 dominates
H1 (that is, if p1�p3 and p2�p4), then the evidence favors H2 over H1

regardless of which auxiliary assumption is true. If, in addition, A2

dominates A1 (that is, if p1�p2 and p3�p4), then (H2 & A2) is the
conjunction with the highest likelihood, and so likelihood considera-
tions point away from both H1 and A1. In this circumstance, the
likelihood inequalities provide no qualitative asymmetry between the
observation’s impact on the hypotheses and its impact on the auxiliary
assumptions, though a quantitative asymmetry may nonetheless ob-
tain. If dominance holds in one direction but not the other, there is
a qualitative asymmetry.

TABLE 8

Possible Auxiliary Assumptions

A1 A2

Hypotheses H1 p1�0 p 2

H2 p 3 p 4
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In both the likelihood approach and the model selection approach,
all four conjunctions of the form (Hi & Aj) (i,j � 1,2) must be consid-
ered.39 This brings out a further difference between these analyses
and Quine’s holistic epistemology. As noted earlier, the holist recog-
nizes that people manage to decide which conjunct to blame when
a conjunction generates a false prediction, but contends that this
decision must rely on extra-evidential considerations, such as simplic-
ity or conservatism. The problem is typically formulated in terms of
what a person believes—if you believe the conjunction (H1 & A1) and
then find that conjunction refuted by the evidence, which conjunct
should you abandon? Quine recommends a policy of “minimum muti-
lation”—you should impose the smallest change in your web of belief
that suffices to restore consistency with the observations, where chang-
ing a more “central” belief is regarded as a larger modification than
changing a belief that is more “peripheral.”40 It follows that if you
believe (H1 & A1), there can be no reason for you to abandon both
conjuncts and embrace (H2 & A2), if a more conservative reformation
to either (H1 & A2) or to (H2 & A1) would manage to restore consis-
tency. It is interesting that the Law of Likelihood and model selection
criteria place no premium on minimizing change in which proposi-
tions you believe. What you happen to believe plays no role at all; in
fact, you do not enter into the analysis. The question is entirely about
the relationship of propositions to data and has nothing to do with
people and their affections or mobility. If (H2 & A2) has the highest
likelihood or the best AIC score, so be it.41

The falsity of epistemological holism does not mean that it is never
true; the point is that it is often untrue. Indeed, it is possible to describe
a circumstance that can arise within a likelihood framework in which
holistic intuitions are vindicated. Suppose that dominance fails, both
with respect to the comparison of hypotheses and also with respect
to the comparison of auxiliary assumptions. That is, let p1�p2, p3�p4,

39 I hope it is clear that my focus on four conjunctions is an expository convenience.
Both the Law of Likelihood and model selection criteria can address any number
of conjunctions, and the asymmetries I have described can arise in that larger compar-
ative context as well.

40 Philosophy of Logic, p. 7; see also “Two Dogmas of Empiricism,” p. 44.
41 Since Quine’s principle concerns change in what one believes, whereas the Law

of Likelihood and model selection criteria do not provide rules of acceptance, there
is no formal incompatibility here. However, when likelihood is placed in the context
of a full Bayesian framework with prior probabilities, it can turn out that (H1 & A1)
is the conjunction with the highest prior probability whereas (H2 & A2) is the one
whose posterior probability is greatest. The imperative to find the conjunction that
differs minimally from the one with the highest prior probability and that is logically
consistent with the new evidence is not a principle of Bayesian epistemology.
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p1�p3, and p2�p4 in Table 8. The cell entries in the table will then
have two peaks (at H1 & A2 and at H2 & A1) and two valleys (at
H1 & A1 and at H2 & A2). If the two peaks have equal likelihood, the
observations will not discriminate between them, even though each
peak is better supported than the conjunctions that occupy the two
valleys. The history of epistemology is peppered with examples of this
type. I will mention two; the first is Cartesian, while the second is due
to Hans Reichenbach.42 In both cases, (H1 & A1) predicts O, but notO
is what you observe:

notO : There seems to be a printed page in front of me.
H1: There is a salami (and not a printed page) in front of me.
H2: There is a printed page (and not a salami) in front of me.
A1: My senses are functioning normally.
A2: An evil demon is causing printed pages to look like salamis, and

vice versa.

notO : My measurement device indicates that the triangle I have just
measured has an angle sum that exceeds 180�.

H1: Space has zero curvature.
H2: Space has constant positive curvature.
A1: There are no universal forces.
A2: Universal forces are in operation.

Given the observational outcome notO, likelihood allows you to dis-
criminate between conjunctions in the same row and conjunctions
in the same column, but not between the anti-diagonal entries. The
same situation can arise in the context of model selection, if the AIC
scores in Table 7 have the pattern of peaks and valleys just described
in connection with Table 8.

The likelihood approach views theory evaluation as inherently com-
parative. The Law of Likelihood describes what an observation says
about two hypotheses, but is silent on the question of what, if anything,
it says about a single hypothesis taken on its own. Likelihoodism
elevates that omission to the level of principle; when a hypothesis is
tested, it must be tested against alternatives.43 In addition, there is no
single alternative that counts as the uniquely correct alternative to
consider. There are many specific alternatives, and the Law of Likeli-

42 The Philosophy of Space and Time (New York: Dover, 1958).
43 An obvious exception arises when a proposition entails an observational predic-

tion that fails to come true. In this instance, there is no need to consider an alternative;
modus tollens permits one to reject the proposition without further ado. However, in
the very common case in which H, or the conjunction (H & A), confers a probability
on O that is less than unity, the falsity of O cannot be interpreted until alternatives
are considered. Likelihoodism therefore rejects “probabilistic modus tollens” (a.k.a.
Fisherian significance testing), according to which a hypothesis should be rejected
when an event occurs that the hypothesis says was very improbable. For criticisms of
probabilistic modus tollens, see Hacking, Edwards, and Royall.
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hood may be asked for its assessment of all these competitions. This
marks an important difference between likelihoodism and Bayes-
ianism. Bayesianism also has its comparative element, but there is just
one alternative to a proposition that Bayesians need to consider; this
is simply the proposition’s negation. The comparative character of
likelihood assessments (and of model selection criteria as well) is
central to the analysis proposed here of the Duhem-Quine problem:
whether holism is right in what it says about the bearing of evidence on a
conjunction crucially depends on what the alternative conjunctions are. In
many scientific contexts, the competing hypotheses and the compet-
ing auxiliary assumptions are such that the evidence has an impact
on one conjunct that differs from the impact it has on the other.
However, there are other discrimination problems in which the evi-
dence cannot penetrate from an assessment of conjunctions to an
assessment of conjuncts. Holism has its place, but in the context of
scientific inquiry it is, by far, the exception and not the rule.

Quine famously opined that “any statement can be held true come
what may, if we make drastic enough adjustments elsewhere in the
system.”44 Quine’s point was not just that it is logically possible to con-
tinue to believe a proposition in the face of apparently recalcitrant
experience, but that the evidence does not say that this is a mistake.
Decisions about retention or rejection are dictated by nonevidential
considerations. I suspect that the allure of this form of holism derives
from a hypothetico-deductive view of theory testing. If an observation
O confirms a proposition P precisely when P entails O and O turns
out to be true, and O disconfirms P precisely when P entails O and
O turns out to be false, then epistemological holism is correct when
the conjunction (H & A) entails O, but neither conjunct does. In this
circumstance the observational outcome confirms or disconfirms the
conjunction, but not the constituent conjuncts. However, it is abun-
dantly clear that confirmation and disconfirmation can be mediated
by nondeductive relationships. In the examples discussed here con-
cerning tuberculosis diagnosis and phylogenetic inference, the con-
junctions considered were each consistent with the observational out-
come without entailing it, but that does not mean that the evidence
failed to discriminate among them. Evidence can do more than hypo-
thetico-deductivism imagines. It is that extra power that undermines
epistemological holism.

elliott sober
Stanford University
University of Wisconsin/Madison

44 “Two Dogmas of Empiricism,” p. 43.


