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Predictions about the future and unrestricted universal generaliza-
tions are never logically implied by our observational evidence, which
is limited to particular facts in the present and past. Nevertheless,
propositions of these and other kinds are often said to be confirmed by
observational evidence. A natural place to begin the study of confirma-
tion theory is to consider what it means to say that some evidence E
confirms a hypothesis H.

Incremental and absolute confirmation

Let us say that E raises the probability of H if the probability of H
given E is higher than the probability of H not given E. According
to many confirmation theorists, “E confirms H” means that E raises
the probability of H. This conception of confirmation will be called
incremental confirmation.

Let us say that H is probable given E if the probability of H given
E is above some threshold. (This threshold remains to be specified but
is assumed to be at least one half.) According to some confirmation
theorists, “E confirms H” means that H is probable given E. This
conception of confirmation will be called absolute confirmation.

Confirmation theorists have sometimes failed to distinguish these
two concepts. For example, Carl Hempel in his classic “Studies in the
Logic of Confirmation” endorsed the following principles:

(1) A generalization of the form “All F are G” is confirmed by the
evidence that there is an individual that is both F and G.

(2) A generalization of that form is also confirmed by the evidence
that there is an individual that is neither F nor G.

(3) The hypotheses confirmed by a piece of evidence are consistent
with one another.

(4) If E confirms H then E confirms every logical consequence of H.

Principles (1) and (2) are not true of absolute confirmation. Obser-
vation of a single thing that is F and G cannot in general make it
probable that all F are G; likewise for an individual that is neither
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F nor G. On the other hand, there is some plausibility to the idea
that an observation of something that is both F and G would raise the
probability that all F are G. Hempel argued that the same is true of
an individual that is neither F nor G. Thus Hempel apparently had
incremental confirmation in mind when he endorsed (1) and (2).

Principle (3) is true of absolute confirmation but not of incremental
confirmation. It is true of absolute confirmation because if one hypoth-
esis has a probability greater than 1/2 then any hypothesis inconsistent
with it has a probability less than 1/2. To see that (3) is not true of
incremental confirmation, suppose that a fair coin will be tossed twice,
let H1 be that the first toss lands heads and the second toss lands
tails, and let H2 be that both tosses land heads. Then H1 and H2 each
have an initial probability of 1/4. If E is the evidence that the first
toss landed heads, the probability of both H1 and H2 given E is 1/2,
and so both hypotheses are incrementally confirmed, though they are
inconsistent with each other.

Principle (4) is also true of absolute confirmation but not of incre-
mental confirmation. It is true of absolute confirmation because any
logical consequence of H is at least as probable as H itself. One way
to see that (4) is not true of incremental confirmation is to note that
any tautology is a logical consequence of any H but a tautology cannot
be incrementally confirmed by any evidence, since the probability of
a tautology is always one. Thus Hempel was apparently thinking of
absolute confirmation, not incremental confirmation, when he endorsed
(3) and (4).

Since even eminent confirmation theorists like Hempel have failed
to distinguish these two concepts of confirmation, we need to make a
conscious effort not to make the same mistake.

Confirmation in ordinary language

When we say in ordinary language that some evidence confirms a
hypothesis, does the word “confirms” mean incremental or absolute
confirmation?

Since the probability of a tautology is always one, a tautology is
absolutely confirmed by any evidence whatever. For example, evidence
that it is raining absolutely confirms that all triangles have three sides.
Since we would ordinarily say that there is no confirmation in this
case, the concept of confirmation in ordinary language is not absolute
confirmation.

If E reduces the probability of H then we would ordinarily say that
E does not confirm H. However, in such a case it is possible for H to
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still be probable given E and hence for E to absolutely confirm H. This
shows again that the concept of confirmation in ordinary language is
not absolute confirmation.

A hypothesis H that is incrementally confirmed by evidence E may
still be probably false; for example, the hypothesis that a fair coin will
land heads every time in 1000 tosses is incrementally confirmed by
the evidence that it landed heads on the first toss, but the hypothesis
is still extremely improbable given this evidence. In a case like this,
nobody would ordinarily say that the hypothesis was confirmed. Thus
it appears that the concept of confirmation in ordinary language is not
incremental confirmation either.

A few confirmation theorists have attempted to formulate concepts
of confirmation that would agree better with the ordinary concept. One
such theorist is Nelson Goodman. He noted that if E incrementally
confirms H, and X is an irrelevant proposition, then E incrementally
confirms the conjunction of H and X. Goodman thought that in a
case like this we would not say that E confirms the conjunction. He
proposed that “E confirms H” means that E increases the probability
of every component of H. One difficulty with this is to say what counts
as a component of a hypothesis; if any logical consequence of H counts
as a component of H then no hypothesis can ever be confirmed in
Goodman’s sense. In addition, Goodman’s proposal is open to the same
objection as incremental confirmation: It allows that a hypothesis H
can be confirmed by evidence E and yet H be probably false given E,
which is not what people would ordinarily say.

Peter Achinstein speaks of “evidence” rather than “confirmation”
but he can be regarded as proposing an account of the ordinary concept
of confirmation. His account is complex but the leading idea is roughly
that “E confirms H” means that (i) H is probable given E and (ii) it
is probable that there is an explanatory connection between H and
E, given that H and E are true. The explanatory connection may
be that H explains E, E explains H, or H and E have a common
explanation. Achinstein’s proposal is open to one of the same objections
as absolute confirmation: It allows evidence E to confirm H in cases
where E reduces the probability of H. Achinstein has argued that this
implication is in agreement with the ordinary concept, but his reasoning
has been criticized, for example by Sherrilyn Roush.

It appears that none of the concepts of confirmation discussed by
confirmation theorists is the same as the ordinary concept of evidence
confirming a hypothesis. Nevertheless, some of these concepts are wor-
thy of study in their own right. In particular, the concepts of incremen-
tal and absolute confirmation are simple concepts that are of obvious
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importance and they are probably components in the more complex
ordinary language concept of confirmation.

Probability

All the concepts of confirmation that we have discussed involve prob-
ability. However, the word “probability” is ambiguous. For example,
suppose you have been told that a coin either has heads on both sides
or else has tails on both sides and that it is about to be tossed. What is
the probability that it will land heads? There are two natural answers:
(i) 1/2; (ii) either 0 or 1 but I do not know which. These answers
correspond to different meanings of the word “probability”.

The sense of the word “probability” in which (i) is the natural answer
will here be called inductive probability. The sense in which (ii) is the
natural answer will be called physical probability.

Physical probability depends on empirical facts in a way that induc-
tive probability does not. We can see this from the preceding example;
here the physical probability is unknown because it depends on the
nature of the coin, which is unknown; by contrast, the inductive proba-
bility is known even though the nature of the coin is unknown, showing
that the inductive probability does not depend on the nature of the
coin.

There are two main theories about the nature of physical probability.
One is the frequency theory, according to which the physical probability
of an event is the relative frequency with which the event happens in
the long run. The other is the propensity theory, according to which the
physical probability of an event is the propensity of the circumstances
or experimental arrangement to produce that event.

It is widely agreed that the concept of probability involved in con-
firmation is not physical probability. One reason is that physical prob-
abilities seem not to exist in many contexts in which we talk about
confirmation. For example, we often take evidence as confirming a
scientific theory but it does not seem that there is a physical probability
of a particular scientific theory being true. (The theory is either true or
false; there is no long run frequency with which it is true, nor does the
evidence have a propensity to make the theory true.) Another reason is
that physical probabilities depend on the facts in a way that confirma-
tion relations do not. Inductive probability does not have either of these
shortcomings and so it is natural to identify the concept of probability
involved in confirmation with inductive probability. Therefore, we will
now discuss inductive probability in more detail.
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Some contemporary writers appear to believe that the inductive
probability of a proposition is some person’s degree of belief in the
proposition. Degree of belief is also called subjective probability, so on
this view, inductive probability is the same as subjective probability.
However, this is not correct. Suppose, for example, that I claim that
scientific theory H is probable in view of the available evidence. This is
a statement of inductive probability. If my claim is challenged, it would
not be a relevant response for me to prove that I have a high degree of
belief in H, though this would be relevant if inductive probability were
subjective probability. To give a relevant defense of my claim I need to
cite features of the available evidence that support H.

In saying that inductive probabilities are not subjective probabil-
ities, we are not denying that when people make assertions about
inductive probabilities they are expressing their degrees of belief. Every
sincere and intentional assertion expresses the speaker’s beliefs but not
every assertion is about the speaker’s beliefs.

We will now consider the concept of logical probability and, in par-
ticular, whether inductive probability is a kind of logical probability.
This depends on what is meant by “logical probability.”

Many writers define the “logical probability” of H given E as the
degree of belief in H that would be rational for a person whose total
evidence is E. However, the term “rational degree of belief” is far from
clear. On some natural ways of understanding it, the degree of belief in
H that is rational for a person could be high even when H has a low
inductive probability given the person’s evidence. This might happen
because belief in H helps the person succeed in some task, or makes the
person feel happy, or will be rewarded by someone who can read the
person’s mind. Even if it is specified that we are talking about ratio-
nality with respect to epistemic goals, still the rational degree of belief
can differ from the inductive probability given the person’s evidence,
since the rewards just mentioned may be epistemic. Alternatively, one
might take “the rational degree of belief in H for a person whose total
evidence is E” to be just another name for the inductive probability of
H given E, in which case these concepts are trivially equivalent. Thus
if one takes “logical probability” to be rational degree of belief then,
depending on what one means by “rational degree of belief”, it is either
wrong or trivial to say that inductive probability is logical.

A more useful conception of logical probability can be defined as
follows. Let an “elementary probability sentence” be a sentence which
asserts that a specific hypothesis has a specific probability. Let a “log-
ically determinate sentence” be a sentence whose truth or falsity is
determined by meanings alone, independently of empirical facts. Let
us say that a probability concept is “logical in Carnap’s sense” if
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all elementary probability sentences for it are logically determinate.
(This terminology is motivated by some of the characterizations of log-
ical probability in Carnap’s Logical Foundations of Probability.) Since
inductive probability is not subjective probability, the truth of an ele-
mentary statement of inductive probability does not depend on some
person’s psychological state. It also does not depend on facts about the
world in the way that statements of physical probability do. It thus
appears the truth of an elementary statement of inductive probability
does not depend on empirical facts at all and hence that inductive
probability is logical in Carnap’s sense.

It has often been said that logical probabilities do not exist. If this
were right then it would follow that inductive probabilities are either
not logical or else do not exist. So we will now consider arguments
against the existence of logical probabilities.

John Maynard Keynes in 1921 published a theory of what we are
calling inductive probability and he claimed that these are logical.
Frank Ramsey, criticizing Keynes’s theory, claimed that “there really do
not seem to be any such things as the probability relations he describes”
(1926, p. 27). The main consideration that Ramsey offered in support of
this was that there is very little agreement on the values of probabilities
in the simplest cases and these are just the cases where logical relations
should be most clear. Ramsey’s argument has been cited approvingly
by several recent authors.

However, Ramsey’s claim that there is little agreement on the values
of probabilities in the simplest cases seems not to be true. For example,
almost everyone agrees with the following:

(5) The probability that a ball is white, given only that it is either
white or black, is 1/2.

Ramsey cited examples such as the probability of one thing being red
given that another thing is red; he noted that nobody can state a
precise numerical value for this probability. But that is an example of
agreement about the value of an inductive probability, since nobody
pretends to know a precise numerical value for the probability. What
examples like this show is merely that inductive probabilities do not
always have numerically precise values.

Furthermore, if inductive probabilities are logical, it does not follow
that their values should be clearest in the simplest cases, as Ramsey
claimed. Like other concepts of ordinary language, the concept of in-
ductive probability is learned largely from examples of its application
in ordinary life and many of these examples will be complex. Hence,
like other concepts of ordinary language, its application may sometimes
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be clearer in realistic complex situations than in simple situations that
never arise in ordinary life.

So much for Ramsey’s argument. Another popular argument against
the existence of logical probabilities is based on the “paradoxes of
indifference”. The argument is this: Judgments of logical probability
are said to presuppose a general principle, called the Principle of Indif-
ference, which says that if evidence does not favor one hypothesis over
another then those hypotheses are equally probable on this evidence.
This principle can lead to different values for a probability, depending
on what one takes the alternative hypotheses to be. In some cases (de-
scribed by Gillies pp. 37–49) the different choices seem equally natural.
These “paradoxes of indifference”, as they are called, are taken by many
authors to be fatal to logical probability.

But even if we agree (as Keynes did) that quantitative inductive
probabilities can only be determined via the Principle of Indifference,
we can also hold (as Keynes did) that inductive probabilities do not
always have quantitative values. Thus if there are cases where con-
tradictory applications of the principle are equally natural, we may
take this to show that these are cases where inductive probabilities
lack quantitative values. It does not follow that quantitative inductive
probabilities never exist, or that qualitative inductive probabilities do
not exist. The paradoxes of indifference are thus consistent with the
view that inductive probabilities exist and are logical.

How can we have knowledge of inductive probabilities, if this does
not come from an exceptionless general principle? The answer is that
the concept of inductive probability, like most concepts of ordinary lan-
guage, is learned from examples, not by being given general principles.
Hence we can have knowledge about particular inductive probabilities
(and hence logical probabilities) without being able to state a general
principle that covers these cases.

A positive argument for the existence of inductive probabilities is
the following: We have seen reason to believe that a statement of
inductive probability, such as (5), is either logically true or logically
false. Which of these it is will be determined by the concepts involved,
which are concepts of ordinary language. So, since competent speakers
of a language normally use the language correctly, the wide endorse-
ment of (5) is good reason to believe that (5) is a true sentence of
English. And it follows from (5) that at least one inductive probability
exists. Parallel arguments would establish the existence of many other
inductive probabilities.

The concept of probability that is involved in confirmation can
appropriately be taken to be inductive probability. Unlike physical
probability, the concept of inductive probability applies to scientific
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theories. And unlike both physical and subjective probability, the con-
cept of inductive probability agrees with the fact that confirmation
relations are not discovered empirically but by examination of the
relation between the hypothesis and the evidence.

Explication of inductive probability

Inductive probability is a concept of ordinary language and, like many
such concepts, it is vague. This is reflected in the fact that inductive
probabilities often have no precise numerical value.

A useful way to theorize about vague concepts is to define a precise
concept that is similar to the vague concept. This methodology is called
explication, the vague concept is called the explicandum, and the pre-
cise concept that is meant to be similar to it is called the explicatum.
Although the explicatum is intended to be similar to the explicandum,
there must be differences, since the explicatum is precise and the expli-
candum is vague. Other desiderata for an explicatum, besides similarity
with the explicandum, are theoretical fruitfulness and simplicity. See
chapter 1 of Carnap’s Logical Foundations of Probability for further
discussion of explication.

Inductive probability can be explicated by defining, for selected
pairs of sentences E and H, a number that will be the explicatum
for the inductive probability of H given E; let us denote this number
by “p(H|E)”. The set of sentences for which p(H|E) is defined will
depend on our purposes.

Quantitative inductive probabilities, where they exist, satisfy the
mathematical laws of probability. Since a good explicatum is similar
to the explicandum, theoretically fruitful, and simple, the numbers
p(H|E) will also be required to satisfy these laws.

In works written from the 1940s through to his death in 1970, Car-
nap proposed a series of increasingly sophisticated explications of this
kind, culminating in his “Basic System of Inductive Logic” published
posthumously in 1971 and 1980. Other authors have proposed other
explicata, some of which will be mentioned below.

Since the value of p(H|E) is specified by definition, a statement of
the form “p(H|E) = r” is either true by definition or false by definition
and hence is logically determinate. Since we require these values to
satisfy the laws of probability, the function p is also a probability
function. So we may say that the function p is a logical probability
in Carnap’s sense.

Thus there are two different kinds of probability, both of which are
logical in Carnap’s sense: inductive probability and functions that are
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proposed as explicata for inductive probability. Since the values of
the explicata are specified by definition, it is undeniable that logical
probabilities of this second kind exist.

Explication of incremental confirmation

Since inductive probability is vague, and E incrementally confirms H
if and only if E raises the inductive probability of H, the concept of
incremental confirmation is also vague. We will now consider how to
explicate incremental confirmation.

First, we note that the judgment that E confirms H is often made
on the assumption that some other information D is given; this infor-
mation is called background evidence. So we will take the form of a fully
explicit judgment of incremental confirmation to be “E incrementally
confirms H given D.” For example, a coin landing heads on the first
toss incrementally confirms that the coin has heads on both sides, given
that both sides of the coin are the same; there would be no confirmation
if the background evidence was that the coin is normal with heads on
one side only.

The judgment that E incrementally confirms H given D means that
the inductive probability of H given both E and D is greater than the
inductive probability of H given only D. Suppose we have a function
p that is an explicatum for inductive probability and is defined for the
relevant statements. Let “E.D” represent the conjunction of E and D
(so the dot here functions like “and”). Then the explicatum for “E in-
crementally confirms H given D” will be p(H|E.D) > p(H|D). We will
use the notation “C(H,E,D)” as an abbreviation for this explicatum.

The concept of incremental confirmation, like all the concepts of
confirmation discussed so far, is a qualitative concept. For each of
these qualitative concepts there is a corresponding comparative con-
cept, which compares the amount of confirmation in different cases.
We will focus here on the judgment that E1 incrementally confirms H
more than E2 does, given D. The corresponding statement in terms of
our explicata is that the increase from p(H|D) to p(H|E1.D) is larger
than the increase from p(H|D) to p(H|E2.D). This is true if and only if
p(H|E1.D) > p(H|E2.D), so the explicatum for “E1 confirms H more
than E2 does, given D” will be p(H|E1.D) > p(H|E2.D). We will use
the notation “M(H,E1, E2, D)” as an abbreviation for this explicatum.

Confirmation theorists have also discussed quantitative concepts of
confirmation, which involve assigning numerical “degrees of confirma-
tion” to hypotheses. In earlier literature, the term “degree of confir-
mation” usually meant degree of absolute confirmation. The degree to
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which E absolutely confirms H is the same as the inductive probability
of H given E and hence is explicated by p(H|E).

In recent literature, the term “degree of confirmation” is more likely
to mean degree of incremental confirmation. An explicatum for the
degree to which E incrementally confirms H given D is a measure of
how much p(H|E.D) is greater than p(H|D). Many different explicata
of this kind have been proposed; they include the following. (Here “∼H”
means the negation of H.)

Difference measure: p(H|E.D)− p(H|D)
Ratio measure: p(H|E.D)/p(H|D)
Likelihood ratio: p(E|H.D)/p(E|∼H.D)

Confirmation theorists continue to debate the merits of these and other
measures of degree of incremental confirmation.

Verified consequences

The remainder of this article will consider various properties of incre-
mental confirmation and how well these are captured by the explicata C
andM that were defined above. We begin with the idea that hypotheses
are confirmed by verifying their logical consequences.

If H logically implies E given background evidence D, we usually
suppose that observation of E would incrementally confirm H given D.
For example, Einstein’s general theory of relativity, together with other
known facts, implied that the orbit of Mercury precesses at a certain
rate; hence, the observation that it did precess at this rate incrementally
confirmed Einstein’s theory, given the other known facts.

The corresponding explicatum statement is: If H.D implies E then
C(H,E,D). Assuming that p satisfies the laws of mathematical prob-
ability, this explicatum statement can be proved true provided that
0 < p(H|D) < 1 and p(E|D) < 1.

We can see intuitively why the provisos are needed. If p(H|D) = 1
then H is certainly true given D and so no evidence can incrementally
confirm it. If p(H|D) = 0 then H is certainly false given D and the
observation that one of its consequences is true need not alter this
situation. If p(E|D) = 1 then E was certainly true given D and so the
observation that it is true cannot provide new evidence for H.

If H and D imply both E1 and E2, and if E1 is less probable
than E2 given D, then we usually suppose that H would be better
confirmed by E1 than by E2, given D. The corresponding explicatum
statement is: If H.D implies E1 and E2, and p(E1|D) < p(E2|D), then
M(H,E1, E2, D). Assuming that p satisfies the laws of probability, this
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can be proved true provided that 0 < p(H|D) < 1. The proviso makes
sense intuitively for the same reasons as before.

If H and D imply both E1 and E2 then we usually suppose that
E1 and E2 together would confirm H more than E1 alone, given D.
The corresponding explicatum statement is that if H.D implies E1 and
E2 then M(H,E1.E2, E1, D). It follows from the result in the previous
paragraph that this is true, provided that p(E1.E2|D) < p(E1|D) and
0 < p(H|D) < 1. The provisos are needed for the same reasons as
before.

These results show that, if we require p to satisfy the laws of proba-
bility, then C and M will be similar to their explicanda with respect to
verified consequences and, to that extent at least, C andM will be good
explicata. In addition, these results illustrate in a small way the value
of explication. Although the provisos that we added make sense when
one thinks about them, the need for them is likely to be overlooked if
one thinks only in terms of the vague explicanda and does not attempt
to prove a precise corresponding result in terms of the explicata. Thus
explication can give a deeper and more accurate understanding of the
explicandum. We will see more examples of this.

Reasoning by analogy

If two individuals are known to be alike in certain respects, and one
is found to have a particular property, we often infer that, since the
individuals are similar, the other individual probably also has that
property. This is a simple example of reasoning by analogy and it is a
kind of reasoning that we use every day.

In order to explicate this kind of reasoning, we will use “a” and “b” to
stand for individual things and “F” and “G” for logically independent
properties that an individual may have (for example, being tall and
blond). We will use “Fa” to mean that the individual a has the property
F ; similarly for other properties and individuals.

It is generally accepted that reasoning by analogy is stronger the
more properties that the individuals are known to have in common. So
for C to be a good explicatum it must satisfy the following condition:

(6) C(Gb, Fa.Fb,Ga).

Here we are considering the situation in which the background evidence
is that a has G. The probability that b also has G is increased by finding
that a and b also share the property F .

In the case just considered, a and b are not known to differ in any
way. When we reason by analogy in real life we normally do know some
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respects in which the individuals differ but this does not alter the fact
that the reasoning is stronger the more alike a and b are known to be.
So for C to be a good explicatum it must also satisfy the following
condition. (Here F ′ is a property that is logically independent of both
F and G.)

(7) C(Gb, Fa.Fb,Ga.F ′a.∼F ′b).

Here the background evidence is that a has G and that a and b differ
in regard to F ′. The probability that b has G is increased by finding
that a and b are alike in having F .

Another condition that C should satisfy is:

(8) C(Gb,Ga, F ′a.∼F ′b).

Here the background evidence is merely that a and b differ regarding F ′.
For all we know, whether or not something has F ′ might be unrelated
to whether it has G, so the fact that a has G is still some reason to
think that b has G.

In Logical Foundations of Probability, Carnap proposed a particular
explicatum for inductive probability that he called c∗. In The Con-
tinuum of Inductive Methods he described an infinite class of possible
explicata. The function c∗, and all the functions in Carnap’s continuum,
satisfy (6) but not (7) or (8). Hence none of these functions provides a
fully satisfactory explicatum for situations that involve more than one
logically independent property.

Carnap recognized this failure early in the 1950s and worked to find
explicata that would handle reasoning by analogy more adequately. He
first found a class of possible explicata for the case where there are
two logically independent properties; the functions in this class sat-
isfy (6) and (8). Subsequently, with the help of John Kemeny, Carnap
generalized his proposal to the case where there are any finite number
of logically independent properties, though he never published this. A
simpler and less adequate generalization was published by Mary Hesse
in 1964. Both these generalizations satisfy all of (6)–(8).

Carnap had no justification for the functions he proposed except that
they seemed to agree with intuitive principles of reasoning by analogy.
Later he found that they actually violate one of the principles he had
taken to be intuitive. In his last work Carnap expressed indecision
about how to proceed.

For the case where there are just two properties, Maher has shown
that certain foundational assumptions pick out a class of probability
functions, called PI , that includes the functions that Carnap proposed
for this case. Maher argued that the probability functions in PI handle
reasoning by analogy adequately and Carnap’s doubts were misplaced.
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For the case where there are more than two properties, Maher has
shown that the proposals of Hesse, and Carnap and Kemeny, corre-
spond to implausible foundational assumptions and violate intuitive
principles of reasoning by analogy. Further research is needed to find
an explicatum for inductive probability that is adequate for situations
involving more than two properties.

Nicod’s condition

We are often interested in universal generalizations of the form “All
F are G”, for example, “All ravens are black”, or “All metals conduct
electricity”. Nicod’s condition, named after the French philosopher Jean
Nicod, says that generalizations of this form are confirmed by finding
an individual that is both F and G. (Here and in the remainder of this
article, “confirmed” means incrementally confirmed.)

Nicod did not mention background evidence. It is now well known
that Nicod’s condition is not true when there is background evidence of
certain kinds. For example, suppose the background evidence is that, if
there are any ravens, then there is a non-black raven. Relative to this
background evidence, observation of a black raven would refute, not
confirm, that all ravens are black.

Hempel claimed that Nicod’s condition is true when there is no
background evidence but I. J. Good argued that this is also wrong.
Good’s argument was essentially this: Given no evidence whatever, it
is improbable that there are any ravens, and if there are no ravens then,
according to standard logic, “All ravens are black” is true. Hence, given
no evidence, “All ravens are black” is probably true. However, if ravens
do exist, they are probably a variety of colors, so finding a black raven
would increase the probability that there is a non-black raven and hence
disconfirm that all ravens are black, contrary to Nicod’s condition.

Hempel was relying on intuition and Good’s counterargument is in-
tuitive rather than rigorous. A different way to investigate the question
is to use precise explicata. The situation of “no background evidence”
can be explicated by taking the background evidence to be any logically
true sentence; let T be such a sentence. Letting A be “all F are G”,
the claim that Nicod’s condition holds when there is no background
evidence may be expressed in explicatum terms as

(9) C(A,Fa.Ga, T ).

Maher has shown that this can fail when the explicatum p is a function
in PI and that the reason for the failure is the one identified in Good’s

ctk.tex; 23/07/2006; 8:46; p.13



14

argument. This confirms that Nicod’s condition is false even when there
is no background evidence.

Why then has Nicod’s condition seemed plausible? One reason may
be that people sometimes do not clearly distinguish between Nicod’s
condition and the following statement: Given that an object is F , the
evidence that it is G confirms that all F are G. The latter statement
may be expressed in explicatum terms as:

(10) C(A,Ga, Fa).

This is true provided only that p satisfies the laws of probability, 0 <
p(A|Fa) < 1, and p(Ga|Fa) < 1. (This follows from the first of the
results stated earlier for verified consequences.) If people do not clearly
distinguish between the ordinary language statements that correspond
to (9) and (10), the truth of the latter could make it seem that Nicod’s
condition is true.

The ravens paradox

The following three principles about confirmation have seemed plausi-
ble to many people.

(11) Nicod’s condition holds when there is no background evidence.

(12) Confirmation relations are unchanged by substitution of logically
equivalent sentences.

(13) In the absence of background evidence, the evidence that some
individual is a non-black non-raven does not confirm that all ravens
are black.

However, these three principles are inconsistent. That is because (11)
implies that a non-black non-raven confirms “all non-black things are
non-ravens”, and the latter is logically equivalent to “all ravens are
black”, so by (12) a non-black non-raven confirms “all ravens are black”,
contrary to (13).

Hempel was the first to discuss this paradox. His initial statement of
the paradox did not explicitly include the condition of no background
evidence but he stated later in his article that this was to be under-
stood. The subsequent literature on this paradox is enormous but most
discussions have not respected the condition of no background evidence.
Here we will follow Hempel in respecting that condition.

The contradiction shows that at least one of (11)–(13) is false.
Hempel claimed that (11) and (12) are true and (13) is false but
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his judgments were based on informal intuitions, not on any precise
explicatum or use of probability theory.

Our preceding discussion of Nicod’s condition shows that (11) is
false, contrary to what Hempel thought. On the other hand, our expli-
cata support Hempel’s view that (12) is true and (13) is false, as we
will now show.

In explicatum terms, what (12) says is: IfH ′, E′, andD′ are logically
equivalent to H, E, and D respectively, then C(H,E,D) if and only
if C(H ′, E′, D′). The truth of this follows from the assumption that p
satisfies the laws of probability.

Now let “F” mean “raven” and “G” mean “black.” Then (13), ex-
pressed in explicatum terms, is the claim ∼C(A,∼Fa.∼Ga, T ). Maher
has shown that this need not be true when p is a function in PI ; we
can instead have C(A,∼Fa.∼Ga, T ). This happens for two reasons:

(a) The evidence ∼Fa.∼Ga reduces the probability of Fb.∼Gb, where
b is any individual other than a. Thus ∼Fa.∼Ga reduces the
probability that another individual b is a counterexample to A.

(b) The evidence ∼Fa.∼Ga tells us that a is not a counterexample to
A, which a priori it could have been.

Both of these reasons make sense intuitively.
We conclude that, of the three principles (11)–(13), only (12) is true.

Projectability

A predicate is said to be “projectable” if the evidence that the predicate
applies to some objects confirms that it also applies to other objects.
The standard example of a predicate that is not projectable is “grue”,
which was introduced by Goodman. On Goodman’s definition, some-
thing is grue if either (i) it is observed before time t and is green or
(ii) it is not observed before time t and is blue. The usual argument
that “grue” is not projectable goes something like this: A grue emerald
observed before t is green, and observation of such an emerald confirms
that emeralds not observed before t are also green. Since a green emer-
ald not observed before t is not grue, it follows that a grue emerald
observed before t confirms that emeralds not observed before t are not
grue; hence “grue” is not projectable.

The preceding account of the meaning of “projectable” was the usual
one but it is imprecise because it fails to specify background evidence.
Let us say that a predicate φ is absolutely projectable if C(φb, φa, T ) for
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any distinct individuals a and b and logical truth T . This concept of ab-
solute projectability is one possible explicatum for the usual imprecise
concept of projectability.

Let “Fa” mean that a is observed before t and let “Ga” mean that
a is green. Let “G′a” mean that either Fa.Ga or ∼Fa.∼Ga. Thus
“G′” has a meaning similar to “grue”. (The difference is just that G′

uses “not green” instead of “blue” and so avoids introducing a third
property.)

Maher has proved that if p is any function in PI then “F”, “G”,
and “G′” are all absolutely projectable. It may seem unintuitive that
“G′” is absolutely projectable. However, this result corresponds to the
following statement of ordinary language: The probability that b is grue
is higher given that a is grue than if one was not given any evidence
whatever. If we keep in mind that we do not know whether a or b was
observed before t, this should be intuitively acceptable. So philosophers
who say that “grue” is not projectable are wrong if, by “projectable”,
they mean absolute projectability.

Let us say that a predicate φ is projectable across another predi-
cate ψ if C(φb, φa, ψa.∼ψb) for any distinct individuals a and b. This
concept of projectability across another predicate is a second possible
explicatum for the usual imprecise concept of projectability.

It can be shown that if p is any function in PI then “G” is, and “G′”
is not, projectable across “F”. So philosophers who say that “grue” is
not projectable are right if, by “projectable”, they mean projectability
across the predicate “observed before t”.

Now suppose we change the definition of “Ga” to be that a is (i) ob-
served before t and green or (ii) not observed before t and not green.
Thus “G” now means what “G′” used to mean. Keeping the definitions
of “F” and “G′” unchanged, “G′a” now means that a is green. The
results reported in the preceding paragraph will still hold but now they
are the opposite of the usual views about what is projectable. This
shows that, when we are constructing explicata for inductive proba-
bility and confirmation, the meanings assigned to the basic predicates
(here “F” and “G”) need to be intuitively simple ones rather than
intuitively complex concepts like “grue”.
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