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curves reconstructed for dinosaurs are realistic, because
other types of curve might fit better, and few data at their
lower ends are currently available.

A third crucial question is how birds and their immedi-
ate dinosaurian relatives became small. Erickson [1], we
think, misstates our results [10,11] when he says: ‘It was
posited that selection favored reduced body size because it
enabled decreases in wing loading and improved power-to-
weight ratios.’ Our general analysis of growth patterns in
dinosaurs showed that adult size and absolute growth rate
are usually correlated [12]. As bird ancestors became
miniaturized, they retained similar adult body proportions
as their larger ancestors. Once bird ancestors became
small, regardless of selection pressures, a geometrically
similar wing size at this smaller body size would have
automatically lowered wing loading, and thus increased
aerodynamic lift. Given the scaling of power requirements,
we implied that this consideration might be useful in
analyzing early flight evolution.

We agree on the potential value and use of bone histol-
ogy in fossil (and living) vertebrates to understanding the
growth strategies of extinct animals. However, the opening
chapters of this book are just being written.
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In a recent issue of TREE, Foster et al. [1] defend inclusive
fitness theory [2] from recent challenges [3,4]. The main
author of these challenges, E.O. Wilson, argues that inclu-
sive fitness (also called kin selection [5]) might not be the
main explanation for the evolution of altruism and eusoci-
ality. By contrast, Foster et al. claim not only that inclusive
fitness is the most prominent explanation for altruism, but
also that genetic ‘relatedness is always required for altru-
ism to evolve’ [1]. Here, we take issue with their claim
about genetic relatedness and place the debate in a larger
historical context.

The key finding of inclusive fitness theory is Hamilton’s
rule [2], which predicts that an altruistic trait will increase
in frequency when the inequality rb > c is satisfied. Here, b
is the average fitness benefit provided by the altruistic
behaviour and c is its average cost. The claim by Foster
et al. that genetic similarity between altruists and their
recipients is always required stems from the r term, which
is traditionally seen as a measure of relatedness, and
which obviously must be >0 to satisfy Hamilton’s rule.
Ironically, in the form of Hamilton’s rule [6] that is
required to address conditional traits such as eusocial
sterility, the ‘relatedness coefficient’, r, no longer depends
on kinship or genetic similarity, and the indirect fitness
concept of inclusive fitness theory is not used.

AsWilson andHölldobler point out [4], traits for eusocial
sterility must be phenotypically plastic. For such condi-
tional behaviours, Queller [6] showed that r needs to be
calculated using the assortment between the genotype of
each individual and the phenotype (i.e. behaviours) of those
with whom they interact. Queller’s more general version of
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Hamilton’s ruledoesnotmeasuregenetic similarityand it is
thus not fundamental to Hamilton’s rule [7]. Genetic simi-
larity is just one way to create the necessary degree of
genotype–phenotype assortment. Queller’s version also cal-
culates the average direct fitness benefits to carriers. This
highlights the phenotypic effect that colony-level adapta-
tions (e.g. sterile workers) [3,4,8] have on selection among
reproductive individuals (e.g. queens), rather than on the
indirect fitness of sterile workers themselves.

In the traditional view of inclusive fitness, rb measures
the indirect fitness of an average altruist via its enhance-
ment of direct fitness to its relatives. Alternatively, and
more simply, Hamilton’s rule can be interpreted in terms of
the direct fitness of carriers of the altruistic genotype of
interest, where rbmeasures how much the personal repro-
duction of an average carrier is enhanced by help from
others, related or not. Although these alternative fitness
accounting methods can yield the same result, the direct
fitness approach used by Queller is more general; for
example, it enables one to analyse interspecific mutual-
isms [7]. A preference for the indirect fitness accounting
method (which requires genetic similarity) does not imply
that genetic similarity is actually required either by
Hamilton’s rule or as a causal mechanism in the evolution
of altruism and eusociality in general [9].

The debate between Foster et al. andWilson and Hölldo-
bler must also be viewed in its historical context [8,10].
Foster et al. list several ‘fallacies’ in their Table 1 as though
these are simple mistakes that anyone should be able to
avoid,when, in fact, theywere discovered only after decades
of research. There was a time when kin selection was
regarded as an alternative to group selection, when 3/4
relatedness was thought to be the primary explanation of
eusociality, when r meant genealogical relatedness, when
the focus on r obscured the importance of ecological factors
(encompassed by b and c), and so on. One by one, the
predictions that appeared to issue from kin selection theory
failed, leading to an expanded form inwhich ‘relatedness’ (r)
can now be positive even in randomly formed groups.

Althoughwe are not necessarily endorsing all their argu-
ments,WilsonandHölldobler’smost important claim is that
colony-level selection is necessary and sufficient to explain
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the evolution of eusociality. This was the explanation that
historically preceded kin selection theory, whichHamilton’s
focus on genetic relatedness appeared to replace. Colony-
level selection for eusociality is made possible by colony-
level adaptations that produce sufficient assortment
between the genotype of reproductives and the phenotypic
help from non-reproductives. The efficiency of these adapta-
tions in delivering fitness benefits to reproductivesmatters,
whereas the degree of relatedness to non-reproductives does
not. This assortment produces heritable phenotypic varia-
tion at the colony level, which depends on genetic variation
amongcolonies, but theamountofgeneticvariationneednot
be exceptional and can even be random, just as random
genetic variation among individuals can be sufficient for
individual-level selection. The expanded version of ‘kin
selection’ described by Foster et al. is correct only insofar
as it converges upon the theory that it appeared to replace.
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