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In Chapter 1 we considtred the nature and importance of scientific explanation. If we 
are to be able to provide an explanation of any fact, particular or general, we must be 
able to establish the statements that constitute its explanans. We have seen in the 
Introduction that many of the statements that function as explanans cannot be estab- 
lished in the sense of being conclusively verifies. Nevertheless, these statements can 
be supported or confirmed to some degree that falls short of absolute certainty. Thus, 
we want to learn what is involved in confirming the kinds of statements used in 
explanations, and in other scientific contexts as well. 

This chapter falls into four parts. Part I (Sections 2.1-2.4) introduces the 
problem of confirmation and discusses some attempts to explicate the qualitative 
concept of support. Part 11 (2.5-2.6) reviews Hume's problem of induction and some 
attempted resolutions. Part 111 (2.7-2.8) develops the mathematical theory of prob- 
ability and discusses various interpretations of the probability concept. Finally, Part 
N (2.9-2.10) shows how the probability apparatus can be used to illuminate various 
issues in confirmation theory. 

Parts I, 11, and UI can each stand alone as a basic introduction to the topic with 
which it deals. These three parts, taken together, provide a solid introduction to the 
basic issues in confirmation, induction, -and probability. Part IV covers more ad- 
vanced topics. Readers who prefer not to bring up Hume's problem of induction can 
omit Part U without loss of continuity. 

Part I: Qualitative Confirmation 

2.1 EMPlRlCAL EVIDENCE 
--- - - -. .- 

The physical, biological, and behavioral sciences are all empirical. This mem that - 

their assertions must ultimately face the test of observation- Some scientific state- 
ments face the observational evidence directly; for example, "All swans are white," 
was supported by many observations of European swans, all of which were white, but 
it was refuted by the observation of black swans in Australia. Other scientific state- 
ments confront the observational evidence in indirect ways; for instance, "Every 
proton contains three quarks," can be checked observationally only by looking at the 
results of exceedingly complex experiments. Innumerable cases, of course, fall be- 
tween these two extremes. 

Human beings are medium-sized objects; we are much larger than atoms and 
much smaller than galaxies. Our environment is full of other medium-sized things- 
for example, insects, frisbees, automobiles, and skyscrapers. These can be observed 
with normal unaided human senses. Other things, such as microbes, ate too small to 
be seen directly; in these cases we can use instruments of observation- 
microscopes--lo extend our powers of observation. Similarly, telescopes are exten- 
sions of our senses that enable us to see things that are too far away to be observed 
directly. Our senses of hearing and touch can also be enhanced by various kinds of 
instruments. Ordinary eyeglasses-in contrast to microscopes and telescopes--are 
not extensions of normal human senses; they are devices that provide more normal 
sight for those whose vision is somewhat impaired. 

An observation that correctly reveals the features-such as size, shape, color, 
and texture-of what we are observing is called veridical. Observations that are not 
veridical are illusory. Among the illusory observations are hallucinations, afterim- 
ages, optical illusions, and experiences that occur in dreams. Philosophical arguments 
going back to antiquity show that we cannot be absolutely certain that our direct 
observations are veridical. It is impossible to prove conclusively, for example, that 
any given observation is not a dream experience. That point must be conceded. We 
can, however, adopt the attitude that our observations of ordinary middle-sized phys- 
ical objects are reasonably reliable, and that, even though we cannot achieve cer- 
tainty, we can take measures to check on the veridicality of our observations and 
make corrections as required (see Chapter 4 for further discussion of the topics of 
skepticism and antirealism). 

We can make a rough and ready distinction among three kinds of entities: (i) 
those that can be observed directly with normal unaided human senses; (ii) those that 
can be observed only indirectly by using some instrument that extends the normal 
human senses; and (iii) those that cannot be observed either directly or indirectly, 
whose existence and nature can be established only by some sort of theoretical 
inference. We do not claim that these distinctions a& precise; that will not matter for 
our subsequent discussion. We say much more about category (iii) and the kinds of 
inferences that are involved as this chapter develops. 

Our scientific languages should also be noted to contain terms of two types. We 

The Confirmation of Scientific Hypotheses 43 



have an observational vocabulary that contains expressions refening to entities, 
properties, and relations that we can observe. "Tree," "airplane," " green," "soft," 

- and "is taller than" are familiar examples. We also have a tlreoretical vocubulary - --- - 

containing expressions refemng to entities, properties, and relations that we cannot 
observe. "Microbe," "quark,'l'-felea@&harged," "ionized," and "contains 
more protons than" exemplify this category. The terms of the theoretical vocabulary 
tend to be associated with the unobservable entities of type (iii) of the preceding 
paragraph, but this relationship is by no means precise. The distinction between 
observational terms and theoretical terms-like the distinction among the three kinds 
of entities-is useful, but it is not altogether clear and unambigu&. One further 
point of terminology. Philosophers often use the expression "theoretical entity," but 
it would be better to avoid that term and to speak either oftheoretical tennr or 
unobservable entities. 

At this point a fundamental moral concerning the nature of scientific knowledge 
can be drawn. It is generally conceded that scientific knowledge is not confined to 
what we have observed. Science provides predictions of future occurrences-such as 
the burnout of our sun when all of its hydrogen has been consumed in the synthesis 
of helium-that have not yet been observed and that may never be observed by any 
human. Science provides knowledge of events in the remote past-such as the ex- 
tinction of the dinosaurs-before any human observers existed. Science provides 
khowledge of other parts of the universe-such as planets orbiting distant stars-that 
we are unable to observe at present. This means that much of our scientific knowledge 
depends upon inference as well as observation. Since, however, deductive reasoning 
is nonampliative (see Chapter 1, Section 1.5), observations plus deduction cannot 
provide knowledge of the unobserved. Some other mode of inference is required to 
account for the full scope of our scientific knowledge. 

2.2 THE HYPOTHETICO-DEDUCTIVE METHOD 

As we have seen, science contains some statements that are reports of direct obser- 
vation, and others that are not. When we ask how statements of this latter type are to 
meet the test of experience, the answer often given is the hypothetico-deductive (H-D) 
method; indeed, the H-D method is sometimes offered as the method of scientific 
inference. We must examine its logic. 

The term hypothesis can appropriately be applied to any statement that is in- 
tended for evaluation in terms of its consequences. The idea is to articulate some 
statement, particular or general, from which observational consquences can be drawn. 
An observational consequence is a statement-one that might be true or might be 
fake-whose truth or falsity can be established by making observations. These ob- 
servational consequences are then checked by observation to determine whether they 
are true or false. If the observational consequence turns out to be true, that is said to 
confirm the hypothesis to some degree. If it turns out to be false, that is said to 
disconfirm the hypothesis. 

Let us begin by taking a look at the H-D testing of hypotheses having the form 
of universal generalizations. For a very simple example, consider Boyle's law of 
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gases, which says that, for any gas kept at a constant temperature T, the pressure P 
is inversely proportional to the volume V,' that is, - 

-- -. - -- -- 
P X V = constant (at constant n.' 

- - --.--- 
This implies, for example, that doubling ihe pressure en agaswill reduce its volume 
by a half. Suppose we have a sample of gas in a cylinder with a movable piston, and 
that the pressure of the gas is equal to the pressure exerted by the atmosphere-about 
15 pounds per square inch. It occupies a certain volume, say, I cubic foot. We now 
apply an additional pressure of I atmosphere, making the total pressure 2 atmo- 
spheres. The volume of the gas decreases to 'h cubic foot. This constitutes a 
hypotheticodeductive confirmation of Boyle's law. It can be schematized as follows: 

( I )  At coostant temperature., the pressure of a gas is inversely proportional to its volume 
(Boyle's law). 
The initial volume of the gas is 1 cubic ft. 
The initial pressure is I atm. 
The pressure is increased to 2 atm. 
The temperature remains constant. 
The volume decreases to 95 cubic ft. 

Argument ( I )  is a valid deduction. The first premise is the hypothesis that is being 
tested, namely, Boyle's law. It should be carefully noted, however, that Boyle's law 
is not the only premise of this argument. From the hypothesis alone it is impossible 
to deduce m y  observational prediction; other premises are required. The following 
four premises state the initial conditions under which the test is performed. The 
conclusion is the observatiom~prediction that is derived from the hypothesis and the 
initial conditions. Since the temperature, pressure, and volume can be directly mea- 
sured, let us assume for the moment that we need have no serious doubts about the 
truth of the statements of initial conditions. The argument can be schematized as 
follows: 

(2) H (test hypothesis) 
I (initial conditions) 
0 (observational prediction) 

When the experiment is performed we observe that the observational prediction is 
true. 

As we noted in Chapter I, it is entirely possible for a valid deductive argument 
to have one or more false premises and a true conclusion; consequently, the fact that 
( I )  has a true conclusion does not prove that its premises are true. More specifically, 
we cannot validly conclude that our hypothesis, Boyle's law, is true just because the 
observational prediction turned out to be true. In ([)'the argument from premises to 

' This  lat ti on ship does not hold for temperatures and pressures close to the point at which h e  gas in 
question wadenscs into a liquid or solid state. 
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conclusion is a valid deduction but the argumentfrom the conclusion to the premises 
I is not. If it has any merit at all, it must be as an inductive argument. 

Let us reconstruct the argumet-&om & observstioRaf prediction to-Mt?v-. -- - 
pothesis as follows: 

- - -  . - ,  - - - -- 
(3) The. initial volume of the gas is I cubic K-- - 

- - 

The initial pressure is I atm. - 
The pressure is increased to 2 a h .  
The temperature remuns constant. 
The volume decreases to Y1 cubic it. 

At constant temperature. the pressure of a gas is inversely proportional to its volume 
(Boyle's law). 

No one would seriously suppose that (3) establishes Boyle,'s -law conclusively, or 
even that it renders the law highly probable. At best, it provides a tiny bitof inductive 
support. If we want to provide solid inductive support for Boyle's law it is necessary 
to make repeated tests of this gas, at the same temperature, for different pressures and 
volumes, and to make other tests at other temperatures. In addition, other kinds of 
gases must be tested in a similar manner. 

In one respect, at least, our treatment of.the test of Boyle's law has been 
oversimplified. In carrying out the test we do not directly observesay by feeling the 
conta ineraat  the initial and final temperatures of the gas are the same. Some type 
of thermometer is used; what we observe directly is not the temperature of the gas but 
the reading on the thermometer. We are therefore relying on an auxiliary hypothesis 
to the effect that the thermometer is a reliable instrument for the measurement of 
temperature. On the basis of an additional hypothesis of this sort we claim that we can 
observe the temperature indirectly. Similarly, we do not observe the pressures di- 
rectly, by feeling the force against our hands; instead, we use some sort of pressure 
gauge. Again, we need an auxiliary hypothesis stating that the instrument is a reliable 
indicator. 

The need for auxiliary hypotheses is not peculiar to the example we have 
chosen. In the vast majority of cases-if not in every case-auxiliary hypotheses are 
required. In biological and medical experiments, for example, microscopes of various 
types are employed-from the simple optical type to the tunneling scanning electron 
microscope, each of which requires a different set of auxiliary hypotheses. Likewise, 
in astronomical work telescopes-refracting and reflecting optical, infrared, radio, 
X-ray, as well as cameras are used. The optical theory of the telescope and the 
chemical theory of photographic emulsions are therefore required as auxiliary hy- 
potheses. In sophisticated physical experiments using particle accelerators, an elab- 
orate set of auxiliary hypotheses concerning the operation of all of the various sorts 
of equipment is needed. In view of this fact, schema (2) should be expanded: 

(4) H (test hypothesis) 
A (auxiliary hypotheses) 
I (initial conditionsl 
0 (observational prediction) 
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Up to this point we have considered the case in which the observational pre- 
diction tums out to be true. The question arises, what if the observational prediction 
happens tube false? To deal with this case we need a different example. -- - - 

-.-- -- . - --- 

At the beginning of the nineteenth century a serious controversy existed about 
the nature of light. Two majur - en - - t ion .  According to one 
thwry light consists of tiny particles; according to the other,-ligmtonsists of waves. 
If the corpuscular theory is true, a circular object such as a coin or ball bearing, if 
brightly illuminated, will cast a uniformly dark circular shadow. The following H-D 
test was performed: 

( 5 )  Light consists of corpuscles that travel in straight lines.' 
- A circular object is brightly illuminated. 

The object casts a uniform circular shadow. 

Surprisingly, when the experiment was performed, it turned out that the shadow had 
a bright spot in its center. Thus, the result of the test was negative; the observational 
prediction was false. 

Argument (5) is a valid deduction; accordingly, if its premises are true its 
conclusion must also be true. But the conclusion is not true. Hence, at least one of the 
premises must be false. Since the second premise was known to be true on the basis 
of direct observation, the first premise-the corpuscular hypothesis--must be false. 

We have examined two examples of H-D tests of hypotheses. In the first, 
Boyle's law, the outcome was pos i t iveae  observational prediction was found to be 
hue. We saw that, even assuming the truth of the other premises in argument ( I ) ,  the 
positive outcome could, at best, lend a small bit of support to the hypothesis. In the 
second, the corpuscular theory of light, the outcome was nega t ivede  observational 
prediction was found to be false. In that case, assuming the truth of the other premise, 
the hypothesis was conclusively refuted. 

The negative outcome of an H-D test is often less straightforward than the 
example just discussed. For example, astronomers who used Newtonian mechanics 
to predict the orbit of the planet Uranus found that their observational predictions 
were incorrect. In their calculations they had, of course, taken account only of the 
gravitational influences of the planets that were known at the time. Instead of tak- 
ing the negative result of the H-D test as a refutation of Newtonian mechanics, they 
postulated the existence of another planet that had not previously been observed. 
That planet, Neptune, was observed shortly thereafter. An auxiliary hypothesis con- 
cerning the constitution of the solar system was rejected rather than Newtonian 
mechanics. 

It is interesting to compare the Uranus example with that of Mercury. Mercury 
also moves in a path that differs from the orbit calculated on the basis of Newtonian 
mechanics. This irregularity, however, could not be successfully explained by pos- 
tulating another planet, though this strategy was tri@. As it turned out, the pertur- 
bation of Mercury's orbit became one of three primary pieces of evidence supporting 
Einstein's general theory of re la t iv i tyae  theory that has replaced Newtonian me- 

Except when they pass from one d i u m  (e.g., air) to another medium (e.g., glass or w a W  
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chanics in the twentieth century. The moral is that negative outcomes of H-D tests 
sometimes do, and sometimes do not, result in the refutation of the test hypothesis. 
Siace auxiliary hypohem are a i m  always-present in H-D testsFHie must face the --- 

possibility that an auxiliary hypothesis, rathtr than the test hypothesis, is responsible 
- -- for the negatiwmtmt,\r. 

- -  - 

. - 
2.3 PROBLEMS WITH THE HYWTHETICO-DEDUCTIVE METHOD 

The H-D method has two serious shortcomings that must be taken into account. The 
first of these might well be called the problem of alternative hypotheses. Let us 
reconsider the case of Boyle's law. If we represent that law graphically, it says that 
a plot of pressures against volumes is a smooth curve, as shown in Figure 2.1. 

The result of the test, schematized in argument (I), is that we have two points 
(indicated by arrows) on this curve--one corresponding to a pressure of 1 atmosphere 
and a volume of 1 cubic foot, the other corresponding to a pressure of 2 atmospheres 
and a volume of 1/2 cubic foot. While these two points conform to the solid curve 
shown in the figure, they agree with infinitely many other curves as well-for ex- 
ample, the dashed straight line through those two points. If we perform another test, 
with a pressure of 3 atmospheres, we will find that it yields a volume of !h cubic foot. 
This is incompatible with the straight line curve, but the three points we now have are 
still compatible with infinitely many curves, such as the dotted one. that go through 
these three. Obviously we can make only a finite number of tests; thus, it is clear that, 
no matter how many tests we make. the results will be compatible with infinitely 
many different curves. 
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This fact poses a profound problem for the hypotheticdeductive method. 
Whenever an observational result of an H-D test confirms a given hypothesis, it 
also eonfinrp infinitely many other hypotkeses that He inconpatible with the gi=_,- 
one. In that case, how can we maintain that the test confirms our test hypothesis 
in preference to an infinite ntmkwd- hypotheses? This is the prob- 
lem of alternative hypotheses. The answer often giverr is that we should prefer the 
simplest hypothesis compatible with the results of the tests. The question then be- 
comes, what has simplicity got to do with this matter? Why are simpler hypotheses 
preferable to more complex ones? The H-D method, as such, does not address 
these questions. 

The second fundamental problem for the H-D method concerns cases in 
which observational predictions cannot be deduced. The'situation arises typically 
where statistical hypotheses are concerned. This problem may be called the prob- 
lem of s(uti$tical hypotheses. Suppose, to return to an example cited in Chapter I, 
that we want to ascertain whether massive doses of vitamin C tend to shorten the 
duration of colds. If this hypothesis is correct, the probability of a quick recovery 
is increased for people who take the drug. (As noted in Chapter I, this is a fic- 
titious example; the genuine question is whether vitamin C lessens the frequency of 

-colds.) As suggested in that chapter, we can conduct a double-blind controlled ex- 
. . . periment. However, we cannot deduce that the average duration of colds among 

people taking the drug will be smaller than the average for those in the control 
group. We can only conclude that, if the hypothesis is true, it is probable that the 
average duration in the experimental group will be smaller than it is in the control 
group. If we predict that the average duration in the experimental group will be 
smaller, the inference is inductive. The H-D method leaves no room for arguments 
of this sort. Because of the pervasiveness of the testing of statistical hypotheses in 
modem science, this limitation constitutes a severe shortcoming of the H-D 
method. 

2.4 OTHER APPROACHES TO QUALITATIVE CONFIRMATION 

The best known alternative to the H-D method is an account of qualitative confir- 
mation developed by Carl G. Hempel ( 1945). The leading idea of Hempel's approach 
is that hypotheses are confirmed by their positive instances. Although seemingly 
simple and straightforward, this intuitive idea turns out to be difficult to pin down. 
Consider, for example, Nicod's attempt to explicate the idea for universal condi- 
tionals; for example: 

H: (x) (Rx > Bx) (All ravens are black). 

(The symbol "(x)" is the so-called universal quantifier, which can be read, "for 
every object x"; "3" is the sign of material implication, which can be read very 
roughly "if. . . then. . . .")Although this statementis too simpleminded toqualify 
as a serious scientific hypothesis, the logical considerations that will be raised apply 
to all universal generalizations in science, no matter how sophisticated-see Section 
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2.11 of this chapter. According to Nicod, E Nicod-confirms such an H just in case E 
implies that some object is an instance of the hypothesis in the sense that it satisfies 
both the antecedent @ the c o n w e a t ,  fot example, E is Ra.B@ dot meam 
"and"; it is the symbol for conjunction); To see why this intuitive idea runs into 
trouble, consider a 7 - - . on qualitative confirmation. 

---- 

Equivalence condition: If E confirms H and I- H E H', then E confirms H'. 

(The triple bar "+' is the symbol for material equivalence; it can be translated very 
roughly as "if and only if," which is often abbreviated "iff." The turnstile "I-" 
preceding a formula means that the formula is a truth of logic.) The failure of this 
condition would lead to awkward situations since then confirmation would depend 
upon the mode of presentation of the hypothesis. Now consider 

H' : (x) (- Bx 3 - Rx). 
(The tilde "-" signifies negation; it is read simply as "not.") H' is logically 
equivalent to H. But 

E: Ra.Ba 
does not Nicod-confirm H' although it does Nicodconfim H. Or consider 

H"r (x) [(Rx. - Bx) 3 (Px. - Px)]. 
Again H" is logically equivalent to H. But by logic alone, nothing can satisfy the 
consequent of H" and if H is true nothing can satisfy the antecedent. So if H is true 
nothing can Nicod-confim 

After rejecting the Nicod account because of these and other shortcomings, 
Hempel's next step was to lay down what he regarded as conditions of adequacy for 
qualitative confirmation-that is, conditions that should be satisfied by any adequate 
definition of quaIitative confirmation. In addition to the equivalence condition there 
are (among others) the following: 

Entailment condition: If E I- H, the E confirms H. 

(When the turnstile is preceded by a formula ("E" in "E I- H"), it means that 
whatever comes before the turnstile logically entails that which follows the turnstile-E 
logically entails H.) 

Such examples might lead one to by to build the equivalence condition into the definition of Nicod- 
umhnation along the following l i s :  

R(') E Nioodconfirms H just in case there is an H' such that k H 1 H' and such that E implies that 
tbe objects mentioned satisfy both the antecedent and consequent of H'. 

But as the following example duc to Hempel shows, (N') leads to confirmation where it is not wanted in the case 
of multiply quantified hypotheses. Consider 

E implies that the pair a, b satisfies both fhe antecadem and thc consequent of H', and H' is logically equivalent 
O H. So by R(') E Nicod-confirms H. But this is an unacceptnble result since E contradicts H. 
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Special consequence condition: If E confirms H and H I- H' then E confirms H' 

-- Consistency condition: If E confirms H and a h  conhms them IjrPnd H' are---- -- - 
logically consistent. - - -- - --- - 

As a result, he rejects 

Converse consequence condition: If E confirms H and H' I- H then E confirms H'. 

For to accept the converse consequence condition along with the entailment and 
special consequence conditions would lead to the disastrous result that any E confirms 
any H. (Proof of this statement is one of the exercises at the end of this chapter.) Note 
that the H-D account satisfies the converse consequence condition but . - neither the 
special consequence condition nor the consistency condition. 

Hempel provided a definition of confirmation that satisfies all of his adequacy 
conditions. The key idea of his definition is that of the development, dev,(H), of a 
hypothesis H for a set I of individuals. Intuitively, &v,(H) is what H says about a 
domain that contains exactly the individuals of 4. Formally, universal quantifiers are 
replaced by conjunctions and existential quantifiers are replaced by disjunctions. For 

. . example, let I = {a,  b), and take 

H: (x) Bx (Everything is beautiful) 

then 

dev,(H) = Ba.Bb. 

Or take 

H': (3x) Rx (Something is rotten) 

then 

dev,(H1) = Ra v Rb. 

(The wedge "v" symbolizes the inclusive disjunction; it means "and/or"--that is, 
"one, or the other, or both.") Or take 

ff (x) ( 3 y )  Lxy (Everybody loves somebody); 

then 

dev,(H") = (Laa v Lab).(Lba v Lbb).4 

Using this notion we can now state the main definitions: 

' In formulas l i e  fi" that have mixed quantifiers. we proceed in hbo steps, working from the inside out. 
r In the tint step we replace the existential quantifier by a disjunction, which yields 

(1) (Lro v Lrb). 

In thc next step we replace &e universal quantifier with a conjunction, which yields &v,(H'?. 
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Def. E directly-Hempel-conjm H just in case E I- dev,(H) for the class I of 
individuals menioned in E. 
Def. E Hempel-conw Kjuft Ie cascE d&e+y_@rms everymeWa of a xct 1 df sentences K i i d i t h t  K I- H. - - 

__----- - - --- - 
To illustrgte the difference betwein the --definitions, note that Ra.Bo does not 
directly-Hempelconfirm Rb 3 Bb but it dqes Fernpelconfirm it. Finally, disconfir- 
mation can be handled in the following manner. 

Def. E Hempel-disconjrm H just in case E confirms -H. 

Despite its initial attractlveness, .there are a number of disquieting features of 
Hempel's attempt to explicate the qualitative concept of confirmation. The discussion 
of these features can be grouped under two queries. First, is Hempel's definition too 
stringent in some respects? Second, is it too liberal in other respects? To motivate the 
first worry consider 

H: (x) Rxy. 

(The expression "Rry"means "x bears relation R toy.") H is Hempel-confirmed by 

E: Raa.Rab.Rbb.Rba. 

But it is not confirmed by 

even though intuitively the latter evidence does support H. Or consider the compound 
hypothesis 

which is true, for example, if we take the quantifiers to range over the natural 
numbers and interpret Rxy to mean that y is greater than x. (Thus interpreted, the 
formula says that for any number whatever, there exists another number that is larger. 
Although this statement is true for the whole collection of natural numbers, it is 
obviously false for any finite set of integers.) This hypothesis cannot be Hempel- 
confirmed by any consistent evidence statement since its development for any finite 
I is inconsistent. Finally, if H is formulated in the theoretical vocabulary, then, except 
in very special and uninteresting cases, H cannot be Hempel-confirmed by evidence 
E stated entirely in the observational vocabulary. Thus, Hempel's account is silent on 
how statements drawn from such sciences as theoretical physics-for example, all 
protons contain three quarks-can be confirmed by evidence gained by observation 
and experiment. This silence is a high price to pay for overcoming some of the defects 
of the more vocal H-D account. 

This last problem is the starting point for Glymour's (1980) so-called boot- 
strapping account of confirmation. Glymour sought to preserve the Hempelian idea 
that hypotheses are confirmed by deducing instances of them from evidence state- 
ments, but in the case of a theoretical hypothesis he allowed that the deduction of 
instances can proceed with the help of auxiliary hypotheses. Thus, for Glymour the 
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basic confirmation relation is t h r e e - p l a c e  confirms H relative to HI-rather than 
twwplace. In the main intended application we are dealing with a scientific theory T 
whieh eonsists of smtwork of hypotheses, fmm which H and H' are both drawn. F-' - --- - 

T is finitely axiomatizable-that is, if T consists of the set of logical consequences of 
- a finite set of hypotheses, H,, Hz,:--pconfid 

if for each Hi there is an H, such that E confirms TfJ3atiTe to Hp The= ideas aB 
most easily illustrated for the case of hypotheses consisting of simple linear equa- 
tions. 

Consider a theory consisting of the following four hypotheses (and all of their 
deductive consequences): 

H,: 0, = X 
Hz: 0, = Y + Z 
H,: 0, = Y + X 
H,: 0, = z 

The 0 s  are supposed to be observable quantities while the Xs and Ys are theoretical. 
For purposes of a concrete example, suppose that we have samples of four 

different gases in separate containers. All of the containers have the same volume, 
and they are at the same pressure and temperature. According to Avogadro's law, 
then, each sample contains the same number of molecules. Observable quantities 
0,4, are simply the weights of the four samples: 

Our hypotheses say 

H,: The first sample consists solely of molecular nitroge-N2-molecular weight 
28; X is the weight of a mole of N, (28 g). 

Hz: The second sample consists of carbon dioxide-CO,-molecular weight 44; Y 
is the weight of a mole of atomic oxygen 0 (16 g), Z is the weight of a mole 
of carbonmonoxide CO (28 g). 

H,: The thiid sample consists of nitrous oxide-N,O-molecular weight 44; Y is 
the weight of a mole of atomic oxygen 0 (16 g) and X is the weight of a mole 
of molecular nitrogen (28 g). 

H,: The fowth sample consists of carbon monoxid~O-molecular  weight 28; Z 
is the weight of a mole of CO (28 g). 

(The integral values for atomic and molecular weights are not precisely correct, 
but they furnish a good approximation for this example.) 

To show how H, can be bootstrapconfirmed relative to the other three hypoth- 
eses, suppose that an experiment has determined v&es O,, O,, 0,. 0,. for the 
observables. From the values for 0, and 0, we can, using H, and H,, compute values 
for Y + Z and for Z. Together these determine a value for Y. Then from the value for 
0, we can, using H,, compute a value for Y + X. Then from these latter two values 
we get a value for X. Finally, we compare this computed value for X with the 
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observed value for 0,. If they are equal, H, is confirmed. Although this simple 
example may seem a bit contrived, it is in principle similar to the kinds of measure- 
ments and mwxhg aawttly used by chemists in* nineteenth century to e s G i A  
molecular and atomic weights. 

If we want h--corr+ a test in the sense that it carries 
with itAepetential for falsification, then w-uld also require that there are 
possible values for the observables such that, using these values and the very same 
bootstrap calculations that led to a confirmatory instance, values for the theoretical 
quantities are produced that contradict the hypothesis in question. This requirement is 
met in the present example. 

In Glymour's original formalization of the bootstrapping idea, macho bootstrap- . 
ping was allowed; that is, in deducing instances of H, it was allowed that H itself 
could be used as an auxiliary assumption. To illustrate, consider again the earlier 
example of the perfect gas law P(ressure) X V(01ume) = K x T(emperature), and 
suppose P, V, T to be observable quantities while the gas constant K is theoretical. 
We proceed to bootstraptest this law relative to itself by measuring the observables 
on two different occasions and then comparing the values k, and k, for K deduced 
from the law itself and the two sets of observation values p,, v,, t, and p,, v,, t,. 
However, macho bootstrapping can lead to unwanted results, and in any case it may 
be unnecessary since, for instance, in the gas law example it is possible to analyze the 
logic of the test without using the very hypothesis being tested as an auxiliary 
assumption in the bootstrap calculation (see Edidin 1983 and van Fraassen 1983) 
These and other questions about bootstrap testing are currently under d~scussion in the 
philosophy journals. (The original account of bootstrapping, Glymour 1980, is open 
to various counterexamples discussed in Christensen 1983; see also Glymour 1983.) 

Let us now return to Hempel's account of confirmation to ask whether it is too 
liberal. Two reasons for giving a positive answer are contained in the following 
paradoxes. 

Paradox of the ravens. Consider again the hypothesis that all ravens are 
black: (x) (Rx 3 Bx). Which of the following evidence statements Hempel-confirm 
the ravens hypothesis? 

E,: Ra,.Ba, 
E,: - Ra, 
E,: Ba, 
E,: - Ra,. - Ba, 
E,: - Ra,.Ba, 
E6: Ra6.- Ba, 

The answer is that El-E, all confirm the hypothesis. Only the evidence E, that refutes 
the hypothesis fails to confirm it. The indoor ornithology of some of these Hempel- 
contirmation relations-the confirmation of the ravens hypothesis, say, by the evi- 
dew that an individual is a piece of white chak-has  seemed to many to be too easy 
to be true. 

Goodman'sparcrdox. If anything seems safe in this area it is that the evidence 
%.Ba that a is a black raven confirms the ravens hypothesis ( x )  (Rx 3 Bx). But on 

i 
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Hempel's approach nothing rides on the interpretation of the predicates Rx and Bx. 
Thus, Hempel confirmation would still obtain if we interpreted Bx to mean that x is 

. . Mite, where "blite." is so defined that an object is blite if it is exam&@ on or before - - -- .-- 
December 31, 2000, and is black or else is examined afterwards and found to be 
white. Thus, by the special consequeaceEonditian, the evidence that a is a -- black 
raven confirms the prediction that if b is a raven examined & 2088, it will be white, - 
which is counterintuitive to say the least. 

Part II: Hume's Problem of Induction 

2.5 THE PFtOBLEM OF JUSTIMING INDUCTION 

Puzzles of the sort just mentioned-involving blite ravens and grue emeralds (an 
object is grue if it is examined on or before December 3 1, 2000 and is green, or it is 
examined thereafter and is blueewere presented in Nelson Goodman (1955) under 
the rubric of the new riddle of induction. Goodman sought the basis of our apparent 
willingness to generalize inductively with respect to such predicates as "black," 
"white," "green," and "blue," but not with respect to "blite" and "grue." To 
mark this distinction he spoke of projectible predicates and unprojectible predicates, 
and he supposed that there are predicates of each of these types. The problem is to find 
grounds for deciding which are which. 

There is, however, a difficulty that is both historically and logically prior. In his 
Treatise of Human Nature ([I 739-1 7401 1978) and his Enquiry Concerning Human 
Understanding (1748) David Hume called into serious question the thesis that we 
have any logical or rational basis for any inductive generalizations-that is, for 
considering any predicate to be projectible. 

Hume divided all reasoning into two types, reasoning concerning relations of 
ideas and reasoning concerning matters of fact and existence. All of the deductive 
arguments of pure mathematics and logic fall into the first category; they are unprob- 
lernatic. In modem terminology we say that they are necessarily tnrth-preserving 
because they are nonampliative (see Chapter 1, Section 1.5). If the premises of any 
such argument are true its conclusion must also be true because the conclusion says 
nothing that was not said, at least implicitly, by the premises. 

Not all scientific reasoning belongs to the first category. Whenever we make 
inferences from observed facts to the unobserved we are clearly reasoning 
ampliatively-that is, the content of the conclusion goes beyond the content of the 
premises. When we predict future occurrences, when we retrodict past occurrences, 
when we make inferences about what is happening elsewhere, and when we establish 
generalizations that apply to all times and places we are engaged in reasoning con- 
cerning matters of fact and existence. In connection with reasoning of the second type 
Hume directly poses the question: What is the foundation of our inferences from the 
observed to the unobserved? He readily concludes that such reasoning is based upon 
relations of cause and effect. When we see lightning nearby (cause) we infer that the 
sound of thunder (effect) will ensue. When we see human footprints in the sand 
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state description 1, all by itself, describes a particular structure, namely, all threeen- 
tities have property F. Similarly, state description 8 describes the structure in which 
no object has that property. - 

Having identified the structure descriptions, Carnap proceeds to assign equal 
weights to them (each gets 114); he then assigns equal weights to the state de- 
scriptions within each structure description. The resulting system of weights is 
shown above. These weights are then used as a measure of the ranges of state- 
ments;" this system of measures is called m*. A confirmation function c* is de- 
fined as  follow^:'^ 

To see how it works, let us reconsider the hypothesis Fc in the light of different 
bits of evidence. First, the range of Fc consists of state description 1, which has 
weight 114, and 3, 4, and 7, each of which has weight 1112. The sum of all of them 
is 112; that is, the probability of our hypothesis before we have any evidence. Now, 
we find that Fa; its measure is 112. The range of Fa.Fc is state descriptions 1 and 
3, whose weights are, respectively, 114 and 1112, for a total of 113. We can now 
calculate the degree of confirmation of our hypothesis on this evidence: 

Carrying out the same sort of calculation for evidence Fa.Fb we find that our hy- 
pothesis has degree of confirmation 314. If, however, our first bit of evidence had 
been -Fa, the degree of confirmation of our hypothesis would have been 113. If 
our secorid bit of evidence had been -Fb, that would have reduced its degree of 
confirmation to 114. The confirmation function c* seems to do the right sorts of 
things. When the evidence is what we normally consider to be positive, the degree 
of confirmation goes up. When the evidence is what we usually take to be negative, 
the degree of confirmation goes down. Clearly, c* allows for learning from expe- 
rience. 

A serious philosophical problem arises, however. Once we start playing the 
game of assigning weights to state descriptions, we face a huge plethora of pos- 
sibilities. In setting up the machinery of state descriptions and weights, Carnap 
demands only that the weights for all of the state descriptions add up to 1, and that 
each state description have a weight greater than 0. These conditions are sufficient 
to guarantee an admissible interpretation of the probability calculus. Camap rec- 
ognized the obvious fact that infinitely many confirmation functions satisfying this 
basic requirement are possible. The question is how to make an appropriate choice. 
It can easily be shown that choosing a confirmation function is precisely the same 
as assigning prior probabilities to all of the hypotheses that can be stated in the 
given language. 

Consider the following possibility for a measure function: 

" The measure of the m g e  of any statement H can be identified with the prior pmbabiity of that 
MaWmcnt in the absence of any background knowledge K. It is an o priori prior probability. 

I Wittgenstein's masum function assigns the weight H to each state description; the confirmation 
huaiw brssd upm it is designated c t .  
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TABLE 2.3 

State Description Weight Structure Description Weight 
- - -. . ---, 

I .  Fo.Fb.Fc 1120 All F 1120 
- 

5. Fo. -Fb. -Fc 
6. -Fo.Fb.-Fc 

(The idea of a confirmation function of this type was given in Burks 1953; the 
philosophical issues are further discussed in Burks 1977, Chapter 3.) This method of 
weighting, which may be designated m O ,  yields a confirmation function C O  , which 
is a sort of counterinductive method. Whereas m* places higher weights on the first 
and last state descriptions, which are state descriptions for universes with a great deal 
of uniformity (either every object has the property, or none has it), rnO places lower 
weights on descriptions of uniform universes. Like c*,  c 0  allows for "learning from 
experience," but it is a funny kind of anti-inductive "learning." Before we reject rnO 
out of hand, however, we should ask ourselves if we have any a priori guarantee that 
our universe is uniform. Can we select a suitable confirmation function without being 
totally arbitrary about it? This is the basic problem with the logical interpretation of 
probability. 

Part IV: Confirmation and Probability 

2.9 THE BAYESIAN ANALYSIS OF CONflRMATlON 

We now turn to the task of illustrating how the probabilistic apparatus developed 
above can be used to illuminate various issues concerning the confirmation of scien- 
tific statements. Bayes's theorem (Rule 9) will appear again and again in these 
illustrations, justifying the appellation of Bayesian confirmation theory. 

Various ways are available to connect the probabilistic concept of confirmation 
back to the qualitative concept, but perhaps the most widely followed route utilizes 
an incremental notion of confirmation: E confirms H relative to the background 
knowledge K just in case the addition of E to K raises the probability of H, that is, 
Pr(H1E.K) >) P ~ ( H I K ) . ' ~  Hempel's study of instance confirmation in terms of a 

" Sometimes, when we say that a hypothesis has been confirmed, we mean that it has been rendered 
highly probabk by the evidence. This his a high probability or absolule concept of conIinnation, and it should 
be cartfully distinguished fran the incrmentol concept now under discussion (see Cmap 1%2, Salmon 1973. 
and Salmon 1975). Salmon (1973) is the most elementary discussion. 
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two-place relation can be taken to be directed at the special case where K contains no 
information. Alternatively, we can suppose that K has been absorbed into Ur prob- 
ability function in the sense thatPr(K)  in which case the condition for 
incremental confirmation reduces to Pr(HIE) > Pr(H). (The unconditional proba- 
bility Pr(H) can be understood as the conditional probability Pr(Hln,  whas T is a 
vacuous statement, for example. a tautology. The axioms of Section 2.7 apply only 
to conditional probabilities. ) 

It is easy to see that on the incremental version of confirmation, Hempel's 
consistency condition is violated as is 

Conjunction condition: If E confirms H and also H' then E confirms H.H1. 

It takes a bit more work to construct a counterexample to the special consequence 
condition. (This example is taken fmm Carnap 1950 and Salmon 1975, the la@r of 
which contains a detailed discussion of Hempel's adequacy conditions in the light of 
the incremental notion of confirmation.) Towards this end take the background howl- 
edge to contain the following information. Ten players participate in a chess tourna- 
ment in Pittsburgh; some are locals. some are from out of town; some are juniors, 
some are seniors; and some are men (M), some are women (W). Their distribution is 
given by 

TABLE 2.4 

And finally. each player initially has an equal chance of winning. Now consider the 
hypotheses H: an out-of-towner wins, and H': a senior wins, and UK evidence E: a 
woman wins. We find that 

Juniors 

Seniors 

Pr(H v H'IE) = 315 <( Pr(H v H') = 7/10. 

SO E doss not confirm H v H'; in fact E confirms -(H v H') and so disconfirms 
H V H' even though H V H' is a consequence of H. 

The upshot is that on the incremental conception of confirmation. Hempel's 

"dequxy conditions and, hence, his definition of qualitative confirmation, inad- 
equate. However. his adequacy conditions fare better on the high probability con- 
ception of confirmation according to which E confirms H relative to K just in case 
Pr(H1E.K) > r .  where r is some number greater than 0.5. But this notion of 

Locals 

M. W. W 

M, M 

I4 As would b' lr case if learning from exirienc.  is modeled as change of probability function h g h  

cmditioaalizatim: that is. "Len K is I&. Pr ,  is placed by Pr- ( ) = Pr ,  ( ( 0. Fmm this p i n t  of 
View. Bayes's themem (Rule 9) describes how probability changes when a new fact is learned. 

Out-of-towners 

M. M 

W. w, W 
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confirmation cannot be what Hempel has in mind; for he wants to say that the 
observation of a single black raven (E) confirms the hypothesis that all ravens are 
black (H), although for typical K, Pr(H1E.K) will s d y  n o t . u m t - w  0.5. Thus, - 

in what follows we continue to work with the incremental concept. 
The probabilistic approach to confirmation coupled with a simple application of 

Bayes's theorem also serves to reveal a kernel of truth in the H-D method. Suppose 
that the following conditions hold: 

(i) H, K I- E; (ii) 1 > Pr(HIK) > 0; and (iii) 1 > Pr(EIK) > 0. 

Condition (i) is the basic.H-D condition. Conditions (ii) and (iii) say that neither H 
nor E is known on the basis of the background information K to be almost surely false 
or almost surely true. Then on the incremental conception it follows, as the H-D 
methodology would have it, that E confirms H on the basis of K. By Bayes's theorem 

Pr(HIK) 
Pr(H1E.K) = - Pr(E I K) 

since by (i),  
Pr(E1H.K) = 1- 

It then follows from (ii) and (iii) that 

Notice also that the smaller Pr(EIK) is, the greater the incremental confirmation 
afforded by E. This helps to ground the intuition that "surprising" evidence gives 
better confirmational value. However, this observation is really double-edged as will 
be seen in Section 2.10. 

The Bayesian analysis also affords a means of handling a disquieting feature of 
the H-D method, sometimes called the problem of irrelevant conjunction. If the H-D 
condition (i) holds for H, then it also holds for H.X where X is anything you like, 
including conjuncts to which E is intuitively irrelevant. In one sense the problem is 
mirrored in the Bayesian approach, for assuming that 1 > Pr(H.XIK) > 0, it follows 
that E incrementally confirms H.X. But since the special consequence condition does 
not hold in the Bayesian approach, we cannot infer that E confirms the consequence 
X of H.X. Moreover, under the H-D condition (i), the incremental confirmation of a 
hypothesis is directly proportional to its prior probability. Since 
Pr(HIK) 2 Pr(H.XIK), with strict inequality ~ holding .. -. in typical cases, the incremen- 

tal'confirmation for H will be greater than for H.X. 
Bayesian methods are Rexible enough to overcome various of the shortcomings 

of Hempel's account. Nothing, for example, prevents the explication of confirmation 
in terms of a Pr-function which allows observational evidence to boost the probability 
of theoretical hypotheses. In addition the Bayesian approach illuminates the para- -. .--- ~ 

doxes of the raidns and Goodman's paradox. 
--- 

In the case of the ravens paradox we may grant that the evidence that the 
individual a is a piece of white chalk can confirm the hypothesis that "All ravens are 
black" since, to put it crudely, this evidence exhausts part of the content of the 
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hypothesis. Nevertheless, as Suppes (1966) has noted, if we are interested in sub- 
jecting the hypothesis to a sharp test, it may be preferable to do outdoor ornithology 
and sample from the class of ravens rather than sampling from the class of aonblack 
things. Let a denote a randomly chosen object and let 

Pr(Ra.Ba) = p,, Pr(Ra. -Ba) = p2 
Pr(-Ra.Ba) = p,, Pr(-Ra. -Ba) = p,. 

Then 

Thus, Pr(-BalRa) > Pr(Ral -Ba) just in case p, > p,.  In our world it certainly 
seems true that p, > p,.  Thus, Suppes concludes that sampling ravens is more likely 
to produce a counterinstance to the ravens hypothesis than is sampling the class of 
nonblack things. 

There are two problems here. The first is that it is not clear how the last 
statement follows since a was supposed to be an object drawn at random from the 
universe at large. With that understanding, how does it follow that Pr(-BalRa) is the 
probability that an object drawn at random from the class of ravens is nonblack? 
Second, it is the anti-inductivists such as Popper (see item 4 in Section 2.8 above and 
2.10 below) who are concerned with attempts to falsify hypotheses. It would seem 
that the Bayesian should concentrate on strategies that enhance absolute and incre- 
mental probabilities. An approach due to Gaifman (1979) and Horwich (1982) com- 
bines both of these points. 

Let us make it part of the background information K that a is an object drawn 
at random from the class of ravens while b is an object drawn at random from the class 
of nonblack things. Then an application of Bayes's theorem shows that 

just in case 

To explore the meaning of the latter inequality, use the principle of total probability 
to find that 

and that 

So the inequality in question holds just in case 
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which is presumably true in our universe. For supposing that some ravens are non- 
black, a random sample from the class of ravens is more apt to produce such a bird 
t h i s  a random sample from the class of nonblack things since the class of nonblack 1 

things is much larger than the class of ravens. Thus. under the assumption of the 
stated sampling procedures, the evidence Ra.Ba does raise the probability of the 
ravens hypothesis more than the evidence -Rb.-Bb does. The reason for this is 
precisely the differential propensities of the two sampling procedures to produce 
counterexamples, as Suppes originally suggested. 

The Bayesian analysis also casts light on the problems of induction, old and 
new, Humean and Goodmanian. Russell ( 1948) formulated two categories of induc- 
tion by enumeration: 

Induction by simple enumeration is the following principle: "Given a number n of a's which 
have been found to be p's, and no a which has been found to be.oot a p, then the two 
statements: (a) 'the next a will be a p,' (b) 'all a ' s  are p's,' both have a probability which 
increases as n inclfreases, and approaches certainty as a limit as n approaches infinity." 

I shall call (a) "particular induction" and (b) "general induction." (1948, 401) 

Between Russell's "particular induction" and his "general induction" we can in- 
terpolate another type, as the following definitions show (note that Russell's "a" and 
"P" refer to properties, not to individual thing+ ' 

Def. Relative to K, the predicate "P" is weakly projectible over the sequence of 
individuals a,, a,, . . . just in casei5 

Def. Relative to K, "P" is strongly projectible over a,, a,, . . . just in case 

lirn Pr(Pa,+,. ... .Pa,+,l Pa,. ... .Pa,.K) = 1. 
n , rn+m 

(The notation lim indicates the limit as m and n both tend to infinity in any manner 
r n , n + m  

you like.) A sufficient condition for both weak and strong probability is that the 
general hypothesis H: (i)Pai receives a nonzero prior probability. To see that it is 
sufficient for weak projectibility, we follow Jeffreys's (1957) proof. By Bayes's 
theorem 

'' Equation lim x, = L means that, for any real number c > 0. there is an integer N > 0 
n-+m 

such that, for all n > N. I x, - L I < r. 
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Unless Pr(Pa,,+ ,lPa,. ... .Pa,.K) goes to 1 as n + m, the denominator on the 
right-hand side of the second equality will eventually become less than Pr(HIK), 
contradicting the truth of probability that thew-hand side is no greater than 1. 

The posit that 

(P) Pr(L(i)PailK] > 0 

is not necessary for weak projectibility. Carnap's systems of inductive logic (see item 
6 in Section 2.8 above) are relevant examples since in these systems (P) fails in a 
universe with an infinite number of individuals although weak projectibility can hold 
in these  system^.'^ But if we impose the requirement of countable additivity 

(CA) lim Pr(Pai. .. . .Pa,lK) = Pr[(i) PailK) 
n + m  

then (P) is necessary as well as sufficjent for strong projectibility. 
Also assuming (CA), (P) is sufficient to generate a version of Russell's "gen- 

eral induction," namely 

(G) lim Pr[(i)Pa,lPa,. . . . .Pa,.K) = 1. 
n + m  

(Russell 1948 lays down.a.number of empirical postulates he thought were necessary 
for induction to work. From the present point of view these postulates can be inter- 
preted as being directed to the question of which universal hypotheses should be given 
nonzero priors. ) 

Humean skeptics who regiment their beliefs according to the axioms of prob- 
ability cannot remain skeptical about the next instance or the universal generalization 
in the face of ever-increasing positive instances (and no negative instances) unless 
they assign a zero prior to the universal generalization. But 

implies that 

which says that there is certainty that a counterinstance exists, which does not seem 
like a very skeptical attitude. 

l6 A nonzero prior for the general hypodmis is a necessary condition for strong projectibility but not for 
weak projectibility. The point can be illustrated by using de Finetti's representation theorem, which says that i f  
P is exchangeable over a,, a,, . . . (which means roughly that the probability does not depend on the order) 
then: 

Pr(Pa,.Pa,. ... .Pa, I K) = JO10" dA8) 

w h m  d 8 )  is a uniquely determined measure on the unit interval 0 5 0 5 I. For the uniform measure dH8)  
= d(8) we have 

P r  (Pa,+ ,lPa,. ... . Pa,,. K) = n + lln + 2 

and 

Note also that the above results on instance induction hold whether "P" is a 
normal or a Goodmanized predicate-for example, they hold just as well for P*a, 
which is defined as -- - - -- 

[(i 5 2000).Pai] v [(i > 2000).-Pai)], 

where Pai means that ai is purple. But this fact just goes to show how weak the results 
are; in particular, they hold only in the limit as n -+ m and they give no information 
about how rapidly the limit is approached. 

Another way to bring out the weakness is to note that (P) does not guarantee 
even a weak form of Hume projectibility. 

Def. Relative to K, "P" is weakly Hume projectible over the doubly infinite 
sequence . . . , a_,, a -  ,, a,,, a , ,  a,, . . . just in case for any n, 
lim Pr(Pa,lPa, - , . . . . .Pa, - . K) = 1.  
k-* m 

(To illustrate the difference between the Humean and non-Humean versions of pro- 
jectibility, let Pa, mean that the sun rises on day n. The non-Humean form of 
projectibility requires that if you see the sun rise on day 1, on day 2, and so on, then 
for any E > 0 there will come a day N when your probability that the sun will rise on 
day N + 1 will be at least 1 - E .  By Contrast, Hume projectibility requires that if 
you saw the sun rise yesterday, the day before yesterday, and so on into the past, then 
eventually your confidence that the sun will rise tomorrow approaches certainty.) 

If (P) were sufficient for Hume projectibility we could assign nonzero priors to 
both (i)Pa, and (i)P*ai, with the result that as the past instances accumulate, the 
probabilities for Pa,,, and for P*a,,, both approach I, which is a contradiction. 

A sufficient condition for Hume projectibility is exchangeability. 

Def. Relative to K, "P" is exchangeable for Pr over the ais just in case for any n 
and m 

where 2 indicates that either P or its negation may be chosen and [a,.] is any 
permutation of the ais in which all but a finite number are left fixed. Should we then 
use a Pr-function for which the predicate "purple" is exchangeable rather than the 
Goodmanized version of "purple"? Bayesianism per se does not give the answer 
anymore than it gives the answer to who will win the presidential election in the year 
2000. But it does permit us to identify the assumptions needed to guarantee the 
validity of one form or another of induction. 

Having touted the virtues of the Bayesian approach to confirmation, it is now 
only fair to acknowledge that it is subject to some serious challenges. If it can rise to 
these challenges, it becomes all the more attractive. 

.. . - .  

2.10 CHAUENGES TO BAYESlANlSM 

I .  Nonzero priors. Popper (1959) claims that "in an infinite universe . . . the 
probability of any (non-tautological) universal law will be zero." If Popper were right 
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and universal generalizations could not be probabilified, then Bayesianism would be 
worthless as applied to theories of the advanced sciences. and we would presumably 
have to resod to Pupper's mefhcul of corroboration (see item 4 in Section 2.8 above). 

To establish Popper's main negative claim it would suffice to show that the prior 
probability of a universal generalization must be zero. Consider again H: (i)Pai. 
Since for any n 

H I- Pa,. Pa,. . . . .Pa, , 
Pr(HIK) 5 lirn Pr(Pa,. ... .PanlK). 

n-m 

Now suppose that 

(I) For all n, Pr(Pa,. ... .Pa,lK) = Pr(Pa,lK) ... . Pr(Pa,lK) 

and that 

(E) Forany rn and n. Pr(Pa,lK) = Pr(PanlK). 

Then except for the uninteresting case that Pr(Pa,lK) = 1 for each n, it follows that 

lirn Pr(Pa,. ... .Pa,lK) = 0 
n + m  

and thus that Pr(HIK) = 0. 
Popper's argument can be attacked in various places. Condition (E) is a form of 

exchangeability, and we have seen above that it cannot be expected to hold for all 
predicates. But Popper can respond that if (E) does fail then so will various forms of 
inductivism (e.g., Hume projectibility). The main place the inductivist will attack is 
at the assumption (I) of the independence of instances. Popper's response is that the 
rejection of (I) amounts to the postulation of something like a causal connection 
between instances. But this a red hening since the inductivist can postulate a prob- 
abilistic dependence among instances without presupposing that the instances are 
cemented together by some sort of causal glue. 

In another attempt to show that probabilistic methods are ensnared in inconsis- 
tencies, Popper cites Jeffreys's proof sketched above that a non-zero prior for (i)Pai 
guarantees that 

1 Of course, none of this helps with the difficult questions of which hypotheses 
I should be assigned nonzero and how large the priors should be. The example 

from item 5 in Section 2.8 above suggests that the latter question can be ignored to 
some extent since the accumulation of evidence tends to swamp differences in priors 
and force merger of posterior opinion. Some powerful results from advanced prob- 
ability theory show that such merger takes place in a very general setting (on this 
matter see Gaifman and Snir 1982). 

2. Probabil@ation vs. inducb've support. Popper and Miller ( 1983) have ar- 
gued that even if it is conceded that universal hypotheses may have nonzero priors and 
thus can be probabilified further and further by the accumulation of positive evidence, 
the increase in probability cannot be equated with genuine inductive support. This con- 
tention is based on the application of two lemmas from the probability calculus: 

Lemma 1. Pr(-H1E.K) x Pr(-EIK) = Pr(H v -EIK) - Pr(H v -EIE.K). 

lirn Pr(Pa,+,lPa,. ... .Pan. K) = 1. 
n + m  

I Lemma 1 leads easily to 
i 

Lemma 2. If Pr(H1E.K) < 1 and Pr(EIK) < 1 then 

~ Pr(H v -EIE.K) < Pr(H V -EIK). 

Let us apply Lemma 2 to the case discussed above where Bayesianism was used to 
show that under certain conditions the H-D method does lead to incremental confir- 
mation. Recall that we assumed that 

H, K I- E; 1 > Pr(EIK) > 0; and 1 > Pr(HIK) > 0 

and then showed that 

Pr(H1E.K) > Pr(HIK), 

which the inductivists want to interpret as saying that E inductively supports H on the 
basis of K. Against this interpretation, Popper and Miller note that H is logically 
equivalent to (H v E). (H v -E). The first conjunct is deductively implied by E, 
leading Popper and Miller to identify the second conjunct as the part of H that goes 

I beyond the evidence. But by Lemma 2 this part is countersupported by E, except in 
the uninterestine case that E.K makes H probabilistically certain. 

But. Popper urges, what is sauce for the goose is sauce for the gander. For we can do 
the same for a Goodmanized P*, and from the limit statements we can conclude that 
for some r > 0.5 there is a sufficiently large N such that for any N' > N, the I 

probabilities for Paw and for P*aN, are both greater than r ,  which is a contradiction 
for appropriately chosen P*. But the reasoning here is fallacious and there is in - ~ fact no contradiction lurking in Jeffreysrs limit theorem since the convergence is 
not supposed to be uniform over different predicates-indeed, Popper's reasoning 
shows that it cannot be. 
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Jeffrey (1684) has objected to the identification of H v -E as the part of H that 
goes beyond the evidence. To see the basis of his objection, take the case where 

H: (i)Pai and E: Pa,. ... .Pan. 

Intuitively, the part of H that goes beyond this evidence is (i) [ (i > n) . .. Pa,] and 
not the Popper-Miller (i)Pa, v -(Pa,. .. . .Pan). 

Gillies (1986) restated the Popper-Miller argument using a measure of inductive 
support based on the incremental model of confirmation: (leaving aside K )  the support 
given by E to H is S(H, E) = Pr(HIE) - Pr(H). We can then show that 

Lemma 3. S(H, E) = S(H v E, E) f S(H v -E. E). 

The Confirmation of Scientific Hypotheses 97 



I Gillies suggested that S(H v EE, ) be identified as the deductive support given 
H by E and S(H v -E, E) as the inductive support. And as we have already seen, 
in the. interesting cases the latter is negative. Dunn and Hellman (1986) responded by 

' dualizing. Hypothesis H is logically equivalent to (H.E) v (H.-E) and S(H, E) 
= S(H.E, E) + S(H. -E, E). Identlfy the second component as the deductive coun- 
tersupport. Since this is negative, any positive support must be contributed by the first 
component which is a measure of the nondeductive support. 

3. The problem of old evidence. In the Bayesian identification of the valid 
kernel of the H-D method we assumed that Pr(EIK) < 1, that is, there was some 
surprise to the evidence E. But this is often not the case in important historical 
examples. When Einstein proposed his general theory of relativity (H) at the close of 
1915 the anomalous advance of the perihelion of Mercury (E) was old news, that is, 
Pr(EIK) = I .  Thus, Pr(HIE. K) = Pr(HI K), and so on the incremental conception 
of confirmation. Mercury's perihelion does not confirm Einstein's theory, a result that 
flies in the face of  the fact that the resolution of the perihelion problem was widely 
regarded as one of the major triumphs of general relativity. Of course, one could seek 
to explain the triumph in nonconfirmational terms, but that would be a desperate 
move. 

G&r (1983) and Jeffrey (1983) have suggested that Bayesianism be given a 
more human face. Actual Bayesian agents are not logically omniscient, and Einstein 
for all his genius was no exception. When he proposed his general theory he did not 
initially know that it did in fact resolve the perihelion anomaly, and he had to go 
thmugh an elaborate derivation to show that it did indeed entail the missing 43" of arc 
per century. Actual flesh and blood scientists learn not only empirical facts but 
logicomathematical facts as well, and if we take the new evidence to consist in such 
facts we can hope to preserve the incremental model of confirmation. To illustrate, let 
us make the following assumptions about Einstein's degrees of belief in 1915: 

(a) Pr(HIK) > 0 (Einstein assigned a nonzero prior to his general theory.) 
(b) Pr(EIK) = 1 (The perihelion advance was old evidence.) 

(c) Pr(H I- EIK) < 1 (Einstein was not logically omniscient and did not invent his 
theory so as to guarantee that it entailed the 43".) 

(d) Pr[(H I- E) v (H I- -E)IK] = I (Einstein knew that his theory entailed a 
definite result for the perihhelion motion.) 

(el Pr(H.(H I- -E)IK] = Pr[H.(H I- -E).-EIK] (Constraint on interpreting C as 
logical implication.) 

From (a)-(e) it can be shown that Pr[HI(H I- E).K]. > Pr(HIK). So learning that his 
theory entailed the happy result served to increase Einstein's confidence in the theory. 

Although the Garber-Jeffrey approach does have the virtue of makiig Bayesian 
agents more human and, therefore, morerealistic, it avoids the question of whether 
the perihelion phenomena did'in fact confirm the general theory of relativity in favor 
of focusing on Einstein's personal psychology. Nor is it adequate to dismiss this 

concern with the remark that the personalist form of Bayesianism is concerned pre- 
cisely with psychology of particular agents, for even if we are concerned principally 
with Einstein himself, the above @culations seem to miss the mark. We now believe 
that for Einstein in 1915 the perihelion phenomena provided a strong confirmation of 
his general theory. And contrary to what the Garber-Jeffrey approach would suggest, 
we would not change our minds if historians of science discovered a manuscript 
showing that as Einstein was writing down his field equations he saw in a flash of 
mathematical insight that HI -  E or alternatively that he consciously constructed his 
field equations so as to guarantee that they entailed E. "Did E confirm H for Ein- 
stein?" and "Did learning that HI- E increase Einstein's confidence in H?" are two 
distinct questions with possibly different answers. (In addition, the fact that agents are 
allowed to assign Pr  (H I- EIK)<l means that the Dutch book justification for the 
probability axioms has to be abandoned. This is anathema for orthodox Bayesian 
personalists who identify with the betting quotient definition of probability.) 

A different approach to the problem of old evidence is to apply the incremental 
model of confirmation to the counterfactual degrees of belief that would have ob- 
tained had E not been known. Readers are invited to explore the prospects and 
problems of this approach for themselves. (For further discussion of the problem of 
old evidence, see Howson 1985, Eells 1985, and van Fraassen 1988.) 

The topic of this chapter has been the logic of science. We have been trying to 
characterize and understand the patterns of inference that are considered legitimate in 
establishing scientific results-in particular, in providing support for the hypotheses 
that become part of the corpus of one science or another. We began by examining 
some extremely simple and basic modes of reasoningae  hypotheticodeductive 
method, instance confirmation, and induction by enumeration. Certainly (pace Pop- 
per) all of them are frequently employed in actual scientific work. 

We find--both in contemporary science and in the history of sc i enceaa t  
scientists do advance hypotheses from which (with the aid of initial conditions and 
auxiliary hypotheses) they deduce observational predictions. The test of Einstein's 
theory of relativity in terms of the bending of starlight passing close to the sun during 
a total solar eclipse is an oft-cited example. Others were given in this chapter. 
Whether the example is as complex as general relativity or as simple as Boyle's law, 
the logical problems are the same. Although the H-D method contains a valid 
kernel-as shown by Bayes's rule-it must be considered a serious oversimplification 
of what actually is involved in scientific confirmation. Indeed, Bayes's rule itself 
seems to offer a schema far more adequate than the H-D method. But-* we have 
seen-it, too, is open to serious objections (such as the problem of old evidence). 

When we looked at Hempel's theory of instance confirmation, we discussed an 
example that has been widely cited in the philosophicd l i t e r a t u ~ a m e l y ,  the gen- 
eralization "All ravens are black." Lf this is a scientific generalization, it is certainly 
at a low level, but it is not scientifically irrelevant. More complex examples raise the 
same logical problems. At present, practicing scientists are concerned with-and 
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excited by-such generalizations as, "All substances having the chemical structure 
given by the formula YBa,Cu,O, are superconductors at 70 kelvins." As if indoor 
ornithology weren't bad enough, we see, by Hempel's analysis. that we can confirm 
this latter-day generalization by observing black crows. It seems that observations by 
birdwatchers can confirm hypotheses of solid state physics. (We realize that bird- 
lovers would disapprove of the kind of test that would need to be performed to 
establish that a raven is not a superconductor at 70°K.) We have also noted, however, 
the extreme limitations of the kind of evidence that can be gathered in any such 
fashion. 

Although induction by enumeration is used to establish universal generaliza- 
tions, its most conspicuous use in contemporary science is connected with statistical 
generalizations. An early example is found in Rutherford's counting of the frequen- 
cies with which alpha particles bombarding a gold foil were scattered backward (more 
or less in the d i i t i o n  from which they came). The counting of instances led to a 
statistical hypothesis attributing stable frequencies to such events. A more recent 
example-employing highly sophisticated experiments-involves the detection of 
neutrinos emitted by the sun. Physicists are- puzzled by the fact that they are detecting 
a much smaller frequency than current theory predicts. (Obviously probabilities of the 
type characterized as frequencies are involved in examples of the sort mentioned 
here.) In each of these cases an inductive extrapolation is drawn from observed 
frequencies. In our examination of induction by enumeration, however, we have 
found that it is plagued by Hume's old riddle and Goodman's new one. 

One development of overwhelming importance in twentiethcentury philosophy - 
of science has been the widespread questioning of whether there is any such thing as ' 

a logic of science. Thomas Kuhn's influential work, The Structure of Scientific 
Revolutions (1962, 1970). asserted that the choice of scientific theories (or hypoth- 
eses) involves factors that go beyond observation and logic-including judgement, 
persuasion, and various psychological and sociological influences. There is, how- 
ever, a strong possibility that, when he wrote about going beyond the bounds of 
observation and logic, the kind of logic he had in mind was the highly inadequate H-D 
schema, (see Salmon 1989 for an extended discussion of this question, and for an 
analysis of Kuhn's views in the light of Bayes's rule). The issues raised by the 
Kuhnian approach to philosophy of science are discussed at length in Chapter 4 of this 
book. 

Among the problems we have discussed there are--obviously-many to which 
we do not have adequate solutions. Profound philosophical difficulties remain. But 
the deep and extensive work done by twentieth-century philosophers of science in 
these areas has cast a good deal of light on the nature of the problems. It is an area 
in which important research is currently going on and in which significant new results 
are to be expected. 

DISCUSSION QUESTIONS 
I 

1. Select a science with which you are familiar and find a case in which a hypothesis or theory is 
taken to be confirmed by some item of evidence. Try to characterize the relationship between the 
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evidence and hypothesis or theory confirmed in terms of the schema discussed here. If none of 
them is applicable, can you find a new schema that is? 

2. If the prior probability of every universal hypothesis is zero how would you have to rate the 
probability of the statement that unicorns (at least one) exist? Explain your answer. 

3. Show that accepting the combination of the en~ailment condition, the special consequence 
condition, and the converse consequence condition (see Section 2.4) entails that any E confirms 
any H. 

4. Consider a population that consists of all of the adult population of some particular district. We 
want to test the hypothesis that all voters are literate, 

which is, of course, equivalent to 
(x)(- Vx 3 - Lx). 

Suppose that approximately 75 percent of the population are literate voters, approximately I5 
percent are literate nonvoters, approximately 5 percent are illiterate nonvoters, and approxi- 
mately 5 percent are illiterate voters-but this does not preclude the possibility that no voters are 
illiterate. Would it be best to sample the class of voters or the class of illiterate people? Explain 
your answer. (This example is given in Suppes 1966, 201.) 

5. Goodman's examples challenge the idea that hypotheses are confirmed by their instances. 
Goodman holds that the distinction between those hypotheses that are and those that are not 
projectable on the basis of their instances is to be drawn in terms of entrenchment. Predicates 
become entrenched as antecedents or consequents by playing those mles in universal condition- 
als that are actually projected. Call a hypothesis admissible just in case it has some positive 
instances, no negative instances, and is not exhausted. Say that H ovenrides H' just in case H 
and H' conflict, H is admissible and is better entrenched than H' (i.e., has a better entrenched 
antecedent and equally well entrenched consequent or vice versa), and H is not in conflict with 
some still better entrenched admissible hypothesis. Critically discuss the idea that H is project- 
able on the basis of its positive instances just in case it is admissible but not overridden. 

6. Show that 
H: ( d  ( 3  y) Rry.(x) - Ru.(x) (y) (2) I(Rxy.Ryz) 3 Rxzl 

cannot be Hempel-confirmed by any consistent E. 
7. It is often assumed in philosophy of science that if one is going to represent numerically the 

degree to which evidence E supports hypothesis H with respect to background B .  then the 
numbers so produced - P(H1E.B) - must obey the probability calculus. What are the pros- 
pects of alternative calculi? (Hint: Consider each of the axioms in turn and ask under what 
circumstances each axiom could be violated in the context of a confirmation theory. What 
alternative axiom might you choose?) 

8. If Bayes's mle is taken as a schema for confirmation of scientific hypotheses, it is necessary to 
decide on an interpretation of probability that is suitable for that context. It is especially crucial 
to think about how the prior probabilities are to be understood. Discuss this problem in the light 
of the admissible interpretations offered in this chapter. 

9. William Tell gave his young cousin Wesley a two-week intensive archery course. At its com- 
pletion, William tested Wes's skill by asking him to shoot arrows at a round target, ten feet in 
radius with a centered bull'seye, five feet in radius. 

"You have learned no control at all," scolded William after the test. "Of those arrows 
that hit the target, five are within five feet of dead center and five more between five apd ten feet 
from dead center." "Not so," replied Wes, who had been distracted from archery practice by 
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his newfound love of geometry. "That five out of ten arrows on the target hit the bull's-eye 
shows I do have control. The bullseye is only one quarter the total area of the target." 

Adjudicate this dispute in the light of the issues raised in the chapter. Note that an 
alternative form of Bayes's rule which applies when one considers the relative confirmation 
accrued by two hypotheses H I  and H, by evidence E with respect to background B is: 

Pr(H,IE.B) - Pr(E IH,.B) . Pr(H,IB) - 
Pr(H,IE.B) Pr(EIH,.B) Pr(H,IB) 

10. Let {HI. Hz. . . . . H,) be a set of competing hypotheses. Say that E selectively Hempel- 
confirms some Hj just in case it Hempelconfirms Hj but fails to confirm the alternative Hs. Use 
this d o n  of selective confirmation to discuss the relative confirmatory pwers of black ravens 
versus nonblack nonravens for alternative hypotheses about the color of ravens. 

. 11. Rove Lemmas 1, 2, and 3 of Section 2.10. 

12. Discuss the prospects of resolving the problem of old evidence by using counterfactual degrees 
. of belief, that is, the degrees of belief that would have obtained had the evidence E not been 

. known. 
13. Work out the details of the following example, which was mentioned in Section 2.8. There is 

a square piece of metal in a closed box. You cannot see it. But you are told that its area is 
somewhere between I square inch and 4 square inches. Show how the use of the principle of 
indiierence can lead to conflicting probability values. 

14. Suppose there is a chest with two drawers. In each drawer are two coins; one drawer contains 
two gold coins, the other contains one gold coin and one silver coin. A coin will be drawn from 
one of these drawers. Suppose, further, that you know (without appealing to the principle of 
indifference) that each drawer has an equal chance of being chosen for the draw, and that, 
within each drawer, each coin has an equal chance of being chosen. When the coin is drawn 
it turns out to be gold. What is the probability that the other coin in the same drawer is gold? 
Explain how you arrived at your answer. 

15. Discuss the problem of ascertaining limits of relative frequencies on the basis of observed 
frequencies in initial sections of sequences of events. This topic is especially suitable for those 
who have studied David Hume's problem regarding the justification of inductive inference in 
Part U of this chapter. 

16. When scientists are considering new hypotheses they often appeal to plausibility arguments. As 
a possible justification for this procedure, it has been suggested that plausibility arguments are 
attempts at establishing prior probabilities. Discuss this suggestion, using concrete illustrations 
from the history of science or contemporary science. 

17. Analyze the bootstrap confirmation of the perfect gas law in such a way that no "macho" 
bootstrapping is used, that is, the gas law itself is not used as an auxiliary to deduce instances 
of itself. 
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