

Suppose that in the country of Knights and Knaves you meet three individuals, A, B, and C. You discover that at least one of them is a Knight and at least one of them is a Knave.

A says "B or C is a Knight" and B says "A or C is a Knight."

Which of them are Knights and which are Knaves?

THE BOOLEAN CONNECTIVES Friday, 3 September

1.4.

 The symbol ¬ is used in our formal language to express negation.

Chiefer Prise Contrast of City

 The symbol ¬ is used in our formal language to express negation.

• If A is a sentence, then $\neg A$ is a sentence.

 The symbol ¬ is used in our formal language to express negation.

• If A is a sentence, then $\neg A$ is a sentence.

• For example:

- The symbol ¬ is used in our formal language to express negation.
- If A is a sentence, then $\neg A$ is a sentence.
- For example: SameSize(a, b) a=b

 \neg SameSize(a,b) \neg (a=b) (abbr. a≠b)

- The symbol ¬ is used in our formal language to express negation.
- If A is a sentence, then $\neg A$ is a sentence.
- For example: SameSize(a, b) a=b

¬SameSize(a,b) ¬(a=b) (abbr. $a \neq b$) ¬¬(a=b), ¬¬¬(a=b), etc.

- The symbol ¬ is used in our formal language to express negation.
- If A is a sentence, then $\neg A$ is a sentence.
- For example: SameSize(a, b) a=b

¬SameSize(a,b) ¬(a=b) (abbr. $a \neq b$) ¬¬(a=b), ¬¬¬(a=b), etc.

Note: SameSize(¬a, b) is NOT a sentence.

- Ander Store - Antine of Street to

Sunday, January 26, 2014

• We will use the symbol \land to express conjunction (and).

- Ander Store - Arriver a Constant

• We will use the symbol \land to express conjunction (and).

• We will use the symbol \vee to express disjunction (or).

And Should with a Court of

- We will use the symbol \land to express conjunction (and).
- We will use the symbol \vee to express disjunction (or).

Control State of the State of Constant

• For example:

- We will use the symbol \land to express conjunction (and).
- We will use the symbol \vee to express disjunction (or).

Contraction of the second of the second

- For example:
 - SameSize(a, b) \land Cube(a)

- We will use the symbol \land to express conjunction (and).
- We will use the symbol \vee to express disjunction (or).

The second state of the second state

For example:
 SameSize(a, b) ^ Cube(a)
 SameSize(a, b) ∨ Cube(a)

- We will use the symbol \land to express conjunction (and).
- We will use the symbol \vee to express disjunction (or).

CANADA STALL CAN THE WE W

For example:
 SameSize(a, b) ∧ Cube(a)
 SameSize(a, b) ∨ Cube(a)
 ¬Cube(a) ∧ a=b

- We will use the symbol \land to express conjunction (and).
- We will use the symbol \vee to express disjunction (or).
- For example:
 SameSize(a, b) ∧ Cube(a)
 SameSize(a, b) ∨ Cube(a)
 ¬Cube(a) ∧ a=b
 ¬(Cube(a) ∧ a=b)

- We will use the symbol \land to express conjunction (and).
- We will use the symbol \vee to express disjunction (or).
- For example:

SameSize(a, b) \land Cube(a)

SameSize(a, b) ∨ Cube(a)

 \neg Cube(a) \land a=b

 \neg (Cube(a) \land a=b)

 \neg (Cube(a) \land a=b) \lor (Larger(b, c) $\lor \neg$ Medium(b))

States and the second second

Sunday, January 26, 2014

 <u>Well-formed sentences</u> are

 (a) intelligible in the formal language;
 (b) produced in the right way by the sentencebuilding rules (functions, predicates, constants, etc.);
 (c) these sentence-building rules are recursive.

- <u>Well-formed sentences</u> are

 (a) intelligible in the formal language;
 (b) produced in the right way by the sentencebuilding rules (functions, predicates, constants, etc.);
 (c) these sentence-building rules are recursive.
- <u>Boolean connectives</u> are one way of turning atomic sentences into complex sentences.

- <u>Well-formed sentences</u> are

 (a) intelligible in the formal language;
 (b) produced in the right way by the sentencebuilding rules (functions, predicates, constants, etc.);
 (c) these sentence-building rules are recursive.
- <u>Boolean connectives</u> are one way of turning atomic sentences into complex sentences.
- If Φ is a sentence and Ψ is a sentence then $(\Phi \lor \Psi)$ is a sentence, etc.

A Charles La Constanting and a Charles

Sunday, January 26, 2014

 Each complex sentence has exactly one <u>main</u> <u>connective</u>.

The Lord And Street of Mary 10

 Each complex sentence has exactly one <u>main</u> <u>connective</u>.

Contractions a second a Constant

• $A \lor (B \land C)$ is a disjunction - the \lor is the m.c.

 Each complex sentence has exactly one <u>main</u> <u>connective</u>.

And And Block And And And Barry tak

A ∨ (B ∧ C) is a disjunction - the ∨ is the m.c.
A and (B ∧ C) are called the disjuncts

 Each complex sentence has exactly one <u>main</u> <u>connective</u>.

Control Plant and a Constant

A ∨ (B ∧ C) is a disjunction - the ∨ is the m.c.
A and (B ∧ C) are called the disjuncts
(A ∨ B) ∧ C is a conjunction - the ∧ is the m.c.

 Each complex sentence has exactly one <u>main</u> <u>connective</u>.

- Anderson and a Country of Country to

A ∨ (B ∧ C) is a disjunction - the ∨ is the m.c.
A and (B ∧ C) are called the disjuncts
(A ∨ B) ∧ C is a conjunction - the ∧ is the m.c.
(A ∨ B) and C are the conjuncts

- Each complex sentence has exactly one <u>main</u> <u>connective</u>.
- A ∨ (B ∧ C) is a disjunction the ∨ is the m.c.
 A and (B ∧ C) are called the disjuncts
 (A ∨ B) ∧ C is a conjunction the ∧ is the m.c.
 (A ∨ B) and C are the conjuncts
 Parentheses are used to determine the order of the
 - connectives and disambiguate sentences.

ALL AND STOLL ANTES

$\neg(A \lor (B \land \neg C)) \land (\neg(D \land E) \lor F)$

Sunday, January 26, 2014

C. A. BETHLE MARKED ST.

$\begin{bmatrix} & & & \\ & & & \\ & & & \\ \neg(A \lor (B \land \neg C)) \land (\neg(D \land E) \lor F)$

ALL AND DESCRIPTION OF THE OWNER

 $\neg(A \lor (B \land \neg C)) \land (\neg(D \land E) \lor F)$ Main Connective

A Charles La Constanting and a Charles

Sunday, January 26, 2014

 $\neg(A \lor (B \land \neg C)) \land (\neg(D \land E) \lor F)$

the second states and the

 $\neg(A \lor (B \land \neg C)) \land (\neg(D \land E) \lor F)$

¬(A ∨ (B ∧ ¬C))

 $(\neg (D \land E) \lor F)$

 $\neg(A \lor (B \land \neg C)) \land (\neg(D \land E) \lor F)$

¬(A ∨ (B ∧ ¬C))

 $(\neg (D \land E) \lor F)$

F

 $(A \lor (B \land \neg C)) \qquad \neg (D \land E)$

MAIN CONNECTIVES

 $\neg(A \lor (B \land \neg C)) \land (\neg(D \land E) \lor F)$

¬(A ∨ (B ∧ ¬C))

 $(\neg (D \land E) \lor F)$

F

(A ∨ (B ∧ ¬C))

(B ∧ ¬C)

¬(D ∧ E) | (D ∧ E)

Sunday, January 26, 2014

Α

MAIN CONNECTIVES

 $\neg(A \lor (B \land \neg C)) \land (\neg(D \land E) \lor F)$

¬(A ∨ (B ∧ ¬C))

 $(\neg (D \land E) \lor F)$

F

(A ∨ (B ∧ ¬C))

A (B ∧ ¬C) B ¬C (D ^ E) D E

 $\neg (D \land E)$

MAIN CONNECTIVES

¬(A ∨ (B ∧ ¬C))

 $(\neg (D \land E) \lor F)$

F

(A ∨ (B ∧ ¬C))

A (B ∧ ¬C) B ¬C

С

 $\neg (D \land E)$ $(D \land E)$ D E

1.4.

 In standard English, we would translate ¬A as 'it is false that' A or 'not' A.

ALL MARKEN AND ALL MARKEN

 In standard English, we would translate ¬A as 'it is false that' A or 'not' A.

• The sentence $\neg A$ is true iff A is not true.

- In standard English, we would translate ¬A as 'it is false that' A or 'not' A.
- The sentence ¬A is true iff A is not true.
- Truth table for negation:

- In standard English, we would translate ¬A as 'it is false that' A or 'not' A.
- The sentence ¬A is true iff A is not true.
- Truth table for negation:

A	٦A
TRUE	FALSE
FALSE	TRUE

Long And Block of the a Constant

1.4.

Sunday, January 26, 2014

 We translate A A B into English as 'it is the case that A and it is the case that B'.

 We translate A A B into English as 'it is the case that A and it is the case that B'.

• The sentence A \wedge B is true iff A and B are both true.

- We translate A A B into English as 'it is the case that A and it is the case that B'.
- The sentence $A \land B$ is true iff A and B are both true.
- Truth table for conjunction:

- We translate A A B into English as 'it is the case that A and it is the case that B'.
- The sentence $A \land B$ is true iff A and B are both true.
- Truth table for conjunction:

Α	В	A ∧ B
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	FALSE
FALSE	FALSE	FALSE

Long And Block of the a Constant

1.4.

Sunday, January 26, 2014

 In English, 'conjunction' refers to a part of speech, such as 'but', 'or', 'yet.'
 In FOL, conjunction means only 'and.'

 In English, 'conjunction' refers to a part of speech, such as 'but', 'or', 'yet.'
 In FOL, conjunction means only 'and.'

 'And' in English can link two names or properties.
 For example, Sam and Sarah had breakfast; Sam had breakfast and went to the park.
 In FOL, conjunction only links two sentences.

- In English, 'conjunction' refers to a part of speech, such as 'but', 'or', 'yet.'
 In FOL, conjunction means only 'and.'
- 'And' in English can link two names or properties.
 For example, Sam and Sarah had breakfast; Sam had breakfast and went to the park.
 In FOL, conjunction only links two sentences.
- In English, 'and' is often used to imply causation or a temporal sequence.

'And' does not have this implication in FOL.

La section and all the section

1.4.

 We translate A v B into English as 'it is the case that A or it is the case that B'.

 We translate A v B into English as 'it is the case that A or it is the case that B'.

• The sentence $A \vee B$ is true iff A is true or B is true or both A and B are true.

• We translate $A \vee B$ into English as 'it is the case that A or it is the case that B'.

- The sentence $A \vee B$ is true iff A is true or B is true or both A and B are true.
- Truth table for disjunction:

• We translate $A \vee B$ into English as 'it is the case that A or it is the case that B'.

- The sentence A ∨ B is true iff A is true or B is true or both A and B are true.
- Truth table for disjunction:

Α	В	$A \lor B$
TRUE	TRUE	TRUE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

 In English, 'A or B' is often used to mean that either A is true, or B is true, but not both (exclusive or).

In FOL, exclusive or (exactly one of) could be expressed as $(A \lor B) \land \neg(A \land B)$

The simple disjunction $(A \lor B)$ is always the inclusive or (at least one of and maybe both).

A Charles and the state of the

Sunday, January 26, 2014

Alice is at the party and Bill is at the party

The Lord And Block and a Con-

Alice is at the party and Bill is at the party $P(a) \land P(b)$

Contractions and all

Alice is at the party and Bill is at the party P(a) \land P(b) Either Alice is at the party or Bill isn't

Alice is at the party and Bill is at the party $P(a) \land P(b)$ Either Alice is at the party or Bill isn't $P(a) \lor \neg P(b)$

A Start And Start Start Control of

Andrew Andrew Andrew

Alice is at the party and Bill is at the party $P(a) \land P(b)$ Either Alice is at the party or Bill isn't $P(a) \lor \neg P(b)$ Neither Alice nor Bill is at the party

ALCONDUCT AND A STATE

Alice is at the party and Bill is at the party $P(a) \land P(b)$ Either Alice is at the party or Bill isn't $P(a) \lor \neg P(b)$ Neither Alice nor Bill is at the party $\neg(P(a) \lor P(b))$

ALL AND ALL AN

Alice is at the party and Bill is at the party $P(a) \land P(b)$ Either Alice is at the party or Bill isn't $P(a) \lor \neg P(b)$ Neither Alice nor Bill is at the party $\neg (P(a) \lor P(b))$ $\neg P(a) \land \neg P(b)$

Alice is at the party and Bill is at the party $P(a) \land P(b)$ Either Alice is at the party or Bill isn't $P(a) \lor \neg P(b)$ Neither Alice nor Bill is at the party $\neg (P(a) \lor P(b))$ $\neg P(a) \land \neg P(b)$ Exactly one of Alice and Bill is at the party

Alice is at the party and Bill is at the party $P(a) \land P(b)$ Either Alice is at the party or Bill isn't $P(a) \lor \neg P(b)$ Neither Alice nor Bill is at the party $\neg (P(a) \lor P(b))$ $\neg P(a) \land \neg P(b)$ Exactly one of Alice and Bill is at the party $(P(a) \lor P(b)) \land \neg (P(a) \land P(b))$

Alice is at the party and Bill is at the party $P(a) \wedge P(b)$ Either Alice is at the party or Bill isn't $P(a) \vee \neg P(b)$ Neither Alice nor Bill is at the party \neg (P(a) \vee P(b)) $\neg P(a) \land \neg P(b)$ Exactly one of Alice and Bill is at the party $(P(a) \vee P(b)) \wedge \neg (P(a) \wedge P(b))$ $(P(a) \land \neg P(b) \lor (\neg P(a) \land P(b))$

Alice is at the party and Bill is at the party $P(a) \wedge P(b)$ Either Alice is at the party or Bill isn't $P(a) \vee \neg P(b)$ Neither Alice nor Bill is at the party \neg (P(a) \vee P(b)) $\neg P(a) \land \neg P(b)$ Exactly one of Alice and Bill is at the party $(P(a) \vee P(b)) \wedge \neg (P(a) \wedge P(b))$ $(P(a) \land \neg P(b) \lor (\neg P(a) \land P(b))$

A Charles and the state of the

Sunday, January 26, 2014

- Low and Block and State

 For a translation to be acceptable, the sentences must be true in exactly the same circumstances.

AND SHALL MATCH AND IN

- For a translation to be acceptable, the sentences must be true in exactly the same circumstances.
- Exactly one of Alice, Bill, and Charlie is at the party.

- For a translation to be acceptable, the sentences must be true in exactly the same circumstances.
- Exactly one of Alice, Bill, and Charlie is at the party.

Ander Store ... which a fellowed the

Is P(a) ∨ P(b) ∨ P(c) a good translation?

- For a translation to be acceptable, the sentences must be true in exactly the same circumstances.
- Exactly one of Alice, Bill, and Charlie is at the party.
- Is P(a) ∨ P(b) ∨ P(c) a good translation?
- NO it is true if Alice and Bill both go, but the English sentence would be false.

- For a translation to be acceptable, the sentences must be true in exactly the same circumstances.
- Exactly one of Alice, Bill, and Charlie is at the party.
- Is P(a) ∨ P(b) ∨ P(c) a good translation?
- NO it is true if Alice and Bill both go, but the English sentence would be false.

The Lord And Dise of Mary Street

Sunday, January 26, 2014

 For a sentence like Cube(a) ∧ Cube(b) to be a good translation of 'Both a and b are cubes' implies that in every possible world created in Tarski's World (some where a is medium, some large, some with a block c, some not, etc.) if 'Both a and b are cubes' is true then 'Cube(a) ∧ Cube(b)' is true and it is false in all other cases.

- For a sentence like Cube(a) ∧ Cube(b) to be a good translation of 'Both a and b are cubes' implies that in every possible world created in Tarski's World (some where a is medium, some large, some with a block c, some not, etc.) if 'Both a and b are cubes' is true then 'Cube(a) ∧ Cube(b)' is true and it is false in all other cases.
- <u>Truth tables</u> are a systematic way of searching all possible circumstances.

- For a sentence like Cube(a) ∧ Cube(b) to be a good translation of 'Both a and b are cubes' implies that in every possible world created in Tarski's World (some where a is medium, some large, some with a block c, some not, etc.) if 'Both a and b are cubes' is true then 'Cube(a) ∧ Cube(b)' is true and it is false in all other cases.
- <u>Truth tables</u> are a systematic way of searching all possible circumstances.