EUCLID'S ELEMENTS: PROPOSITION I

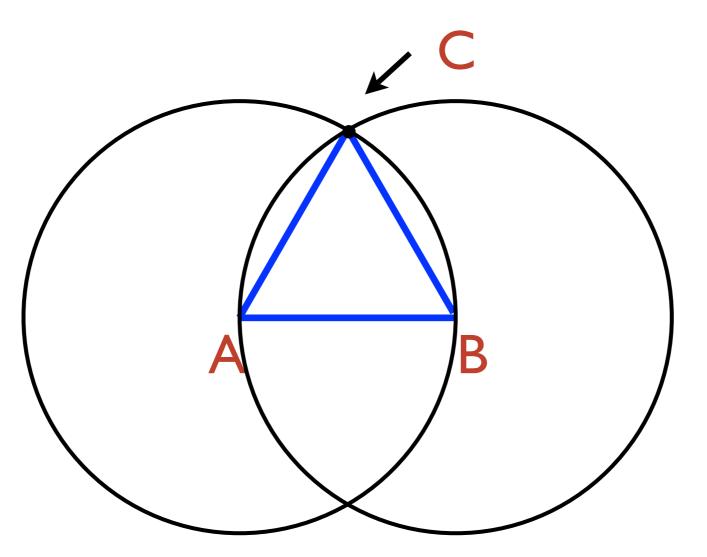
From a given line, construct an equilateral triangle with that line as a side.

You can construct a straight line between any two points (postulate 1).

You can create a circle with any center and radius (postulate 3). [Def: in a circle all lines from center to outside are equal length]

Things which equal the same thing equal one another (common notion 1).

Draw a circle with A at the center, and radius AB
 Draw a circle with B at the center, and radius AB



3) Let C be where the circles intersect and draw AC and BC. Since AB=AC and BA (=AB) =BC,
ABC is an equilateral triangle

PROPERTIES OF RELATIONS

Wednesday, 17 November

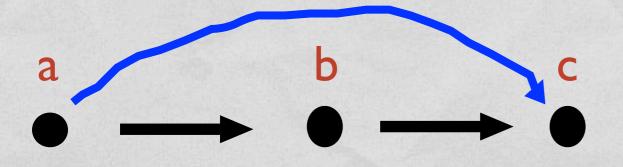
Reflexivity $\forall x R(x,x)$ Anti-Reflexivity $\forall x \neg R(x,x)$ Non-reflexive $\neg \forall x R(x,x) \Leftrightarrow \exists x \neg R(x,x)$ Symmetry $\forall x \forall y (R(x,y) \rightarrow R(y,x))$ Asymmetry $\forall x \forall y (R(x,y) \rightarrow \neg R(y,x))$ Non-symmetric $\neg \forall x \forall y (R(x,y) \rightarrow \neg R(y,x)) \Leftrightarrow$ $\exists x \exists y (R(x,y) \land \neg R(y,x))$ Anti-symmetry $\forall x \forall y [(R(x,y) \land R(y,x)) \rightarrow x=y]$

Reflexive Anti-symmetric So asymmetric + Non-symmetric

a b b Irreflexive So non-reflexive (Still)

Symmetric

Transitivity $\forall x \forall y \forall z [(R(x,y) \land R(y,z)) \rightarrow R(x,z)]$ Anti-Transitivity $\forall x \forall y \forall z [(R(x,y) \land R(y,z)) \rightarrow \neg R(x,z)]$ Non-Transitivity $\exists x \exists y \exists z [(R(x,y) \land R(y,z)) \land \neg R(x,z)]$



If we assume transitivity $[R(a,b) \land R(b,c)] \rightarrow R(a,c)$

Transitivity $\forall x \forall y \forall z [(R(x,y) \land R(y,x)) \rightarrow R(x,z)]$ Anti-Transitivity $\forall x \forall y \forall z [(R(x,y) \land R(y,x)) \rightarrow \neg R(x,z)]$ Non-Transitivity $\exists x \exists y \exists z [(R(x,y) \land R(y,x)) \land \neg R(x,z)]$

> If we assume transitivity $[R(a,b) \land R(b,a)] \rightarrow R(a,a)$

bD

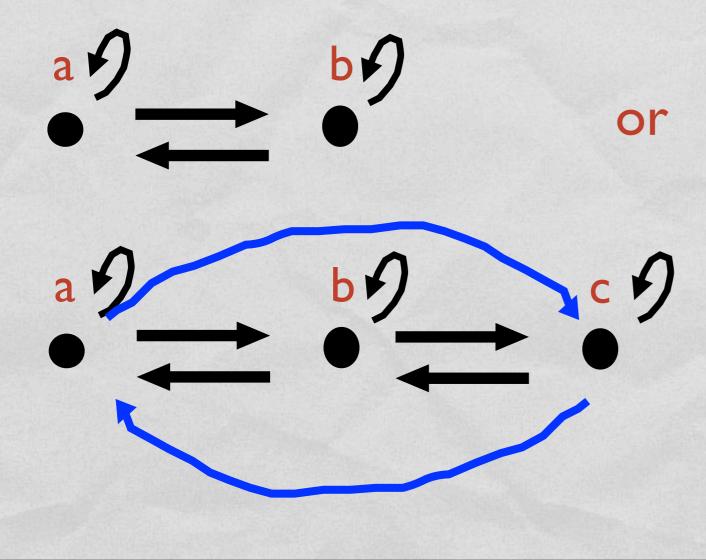
Wednesday, November 17, 2010

a

EQUIVALENCE RELATIONS

Equivalence relations are those that are reflexive, symmetric, and transitive - not necessarily universal

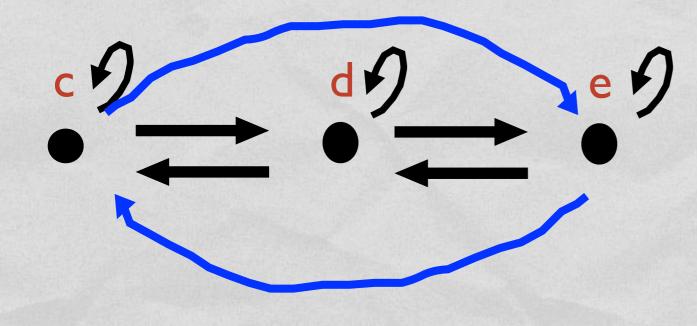
the Lord and Black owners white



EQUIVALENCE RELATIONS

Equivalence relations are those that are reflexive, symmetric, and transitive - not necessarily universal

R partitions the space into groups



Wednesday, November 17, 2010

And the second of the state

There are many other properties which are important enough to have names:

Seriality (or totality) $\forall x \exists y R(x,y)$ Connected (or total) $\forall x \forall y (R(x,y) \lor R(y,x))$ Trichotomous $\forall x \forall y \forall y (R(x,y) \lor R(y,x) \lor x=y)$ Euclidean $\forall x \forall y \forall y [(R(x,y) \land R(x,z)) \rightarrow R(y,z)]$ Dense $\forall x \forall y [R(x,y) \rightarrow \exists z (R(x,z) \land R(z,y))]$