

You know that at least one (possibly more) of A,B,C are involved in a bank robbery and you know no one else was involved. You also know:

If A is guilty and B is innocent, then C is guilty C never works alone A never works with C

Can you safely infer the innocence or guilt of any of them?

FORMAL PROOFS WITH QUANTIFIERS

Friday, 15 October

COMPLEX PREDICATES

There is a large cube to the left of b

 $\exists x(L(x) \land C(x) \land LO(x,b))$

There is a cube to the left of *b* which is in the same row as c

 $\exists y(C(y) \land LO(y,b) \land SR(y,c))$

b is in the same row as a large cube

 $\exists x(L(x) \land C(x) \land SR(b,x))$

COMPLEX PREDICATES

All Ps are Qs

All Ps that are also Rs are Qs

All cubes are to the right of a

All small cubes are to the right of a $\forall x (P(x) \rightarrow Q(x))$

 $\forall x([P(x) \land R(x)] \rightarrow Q(x))$

 $\forall x(Cubes(x) \rightarrow RightOf(x,a))$

 $\forall z([Small(z) \land Cube(z)] \rightarrow RightOf(z,a))$

COMPLEX PREDICATES

Every tall boy is a happy painter

Not every cube in the same row as b is medium

No cubes in the same row as b are medium

Every cube that is either small or medium is smaller than b $\forall x([T(x) \land B(x)] \rightarrow [H(x) \land P(x)])$ $\neg \forall w([C(w) \land SR(w,b)] \rightarrow M(w))$

 $\forall x([C(x) \land SR(x,b)] \rightarrow \neg M(x))$

 $\forall x([C(x) \land (S(x) \lor M(x))] \\ \rightarrow Sm(x,b))$

OTHER FORMS

- If every block is a cube, then none are dodecs
- Every cube is small if and only if it isn't large
- Every cube is either small or medium

Either every cube is small or every cube is medium

 $\forall x C(x) \rightarrow \forall y \neg D(y)$

 $\forall x(C(x) \rightarrow (S(x) \leftrightarrow \neg L(x)))$

 $\forall x(C(x) \rightarrow (S(x) \lor M(x)))$

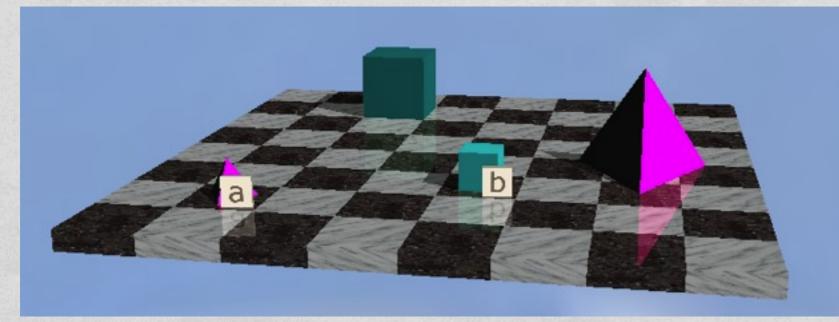
 $\forall x(C(x) \rightarrow S(x)) \lor$ $\forall x(C(x) \rightarrow M(x))$

SATISFACTION - AGAIN

The Low And State of Mary Street Land

 $\begin{array}{ll} \forall x(x=a \rightarrow Tet(x)) & T & Y \\ \exists x(x\neq a \land Small(x) \land Tet(x)) & F & Y \\ \forall x((Small(x) \land Cube(x)) \rightarrow & T \\ & RightOf(x,a)) & \vdots \end{array}$

 $\forall x \operatorname{RightOf}(x,a)$ $\forall x(\operatorname{Tet}(x) \rightarrow (\operatorname{FrontOf}(x,b) \rightarrow \operatorname{Small}(x))$ $\exists x \operatorname{SameSize}(x,a) \rightarrow x=b$



Not a sentence

QUANTIFIERS AND TAUTOLOGIES

Remember that tautological consequence, tautological necessity, tautological equivalence, etc., depend on the Boolean connectives (¬, ∧, ∨, →, and ↔). We can

evaluate tautological notions with truth tables.

 Quantified sentences are sentences too - so they can be tautologies, can be tf-equivalent to other sentences, can tf-entail sentences, etc.

QUANTIFIERS AND TAUTOLOGIES

- $P \vee \neg P$ is a tautology.
- $\exists x Cube(x) \lor \exists x \neg Cube(x) is not.$
- $\forall x \text{ Cube}(x) \lor \forall x \neg \text{Cube}(x) \text{ isn't either.}$
- But $\forall x \text{ Cube}(x) \lor \neg \forall x \text{ Cube}(x)$ is a tautology.
- Let P = ∀x Cube(x). Then ∀xCube(x) ∨ ¬∀xCube(x) is just P ∨ ¬P.

TRUTH-FUNCTIONAL FORM

- The <u>truth-functional form algorithm</u> can be used to distinguish tautologies and tautological consequence from logical truths and logical consequences that depend upon the quantifiers, identity, or predicate meanings.
- First, annotate the sentence: underline the atomic and quantified parts.
- Second, replace the underlined parts with sentence letters. Only use repeat letters for identical parts.

TRUTH-FUNCTIONAL FORM

P

Remember: don't look inside quantified sentences.

ten in the anti-the and the ten

- $\forall x (Cube(x) \rightarrow Medium(x))$
- $\forall x \text{ Cube}(x) \rightarrow \forall x \text{ Medium}(x)$ $P \rightarrow Q$
- <u>Cube(b)</u> \rightarrow <u>Jx Cube(x)</u> $P \rightarrow Q$
- $\forall x \text{ Cube}(x) \rightarrow (\neg \forall x \text{ Cube}(x) \rightarrow \forall x \neg \text{Cube}(x))$ P $\rightarrow (\neg P \rightarrow Q)$

TRUTH-FUNCTIONAL FORM

This results in the <u>truth-functional form</u> of the argument.

the second destroyed a second of the second

• This shows whether an argument is valid in virtue of the connectives.

 $P \rightarrow O$

P

- Example:
 - $\frac{\forall x \text{ Cube}(x)}{\forall x \text{ Cube}(x)} \rightarrow \frac{\exists x \text{ Medium}(x)}{\exists x \text{ Medium}(x)}$

UNIVERSAL ELIMINATION

- For any variable x, any wff P(x), and any constant c, from ∀x P(x) we can infer P(c).
- Note: the constant c could even have been used in the proof already.

I.
$$\forall x P(x)$$
2. P(c) \forall Elim: I

SIMPLE PROOF

- I. All men are mortal2. Socrates is a man
- 3. Socrates is mortal

I. $\forall x(Ma(x) \rightarrow Mo(x))$ 2. Ma(s) 3. Mo(s)

I. $\forall x(Ma(x) \rightarrow Mo(x))$ 2. Ma(s)3. $Ma(s) \rightarrow Mo(s) \quad \forall Elim I$ 4. $Mo(s) \quad \rightarrow Elim 2,3$

UNIVERSAL INTRODUCTION

- For a constant c naming an arbitrary object, any variable x, and any wff P(x), if we show in a subproof that P(c), we can conclude that ∀x P(x).
- Note: the constant c must be new. The step will only work if c only occurs within the subproof.

 I.c

 ...

 j.P(c)

 k. ∀x P(x)
 ∀ Intro: I-j

UNIVERSAL QUANTIFIER PROOFS

```
I. \forall x(P(x) \rightarrow Q(x))
2. \forall x(Q(x) \rightarrow R(x))
  3. a
   4. P(a)
    5. P(a) \rightarrow Q(a) \forall Elim I
    6. Q(a) \rightarrow Elim 4,5
    7. Q(a) \rightarrow R(a) \forall Elim 2
    R(a)
  P(a) \rightarrow R(a)
                               → Intro
 \forall x(P(x) \rightarrow R(x)) \forall Intro
```

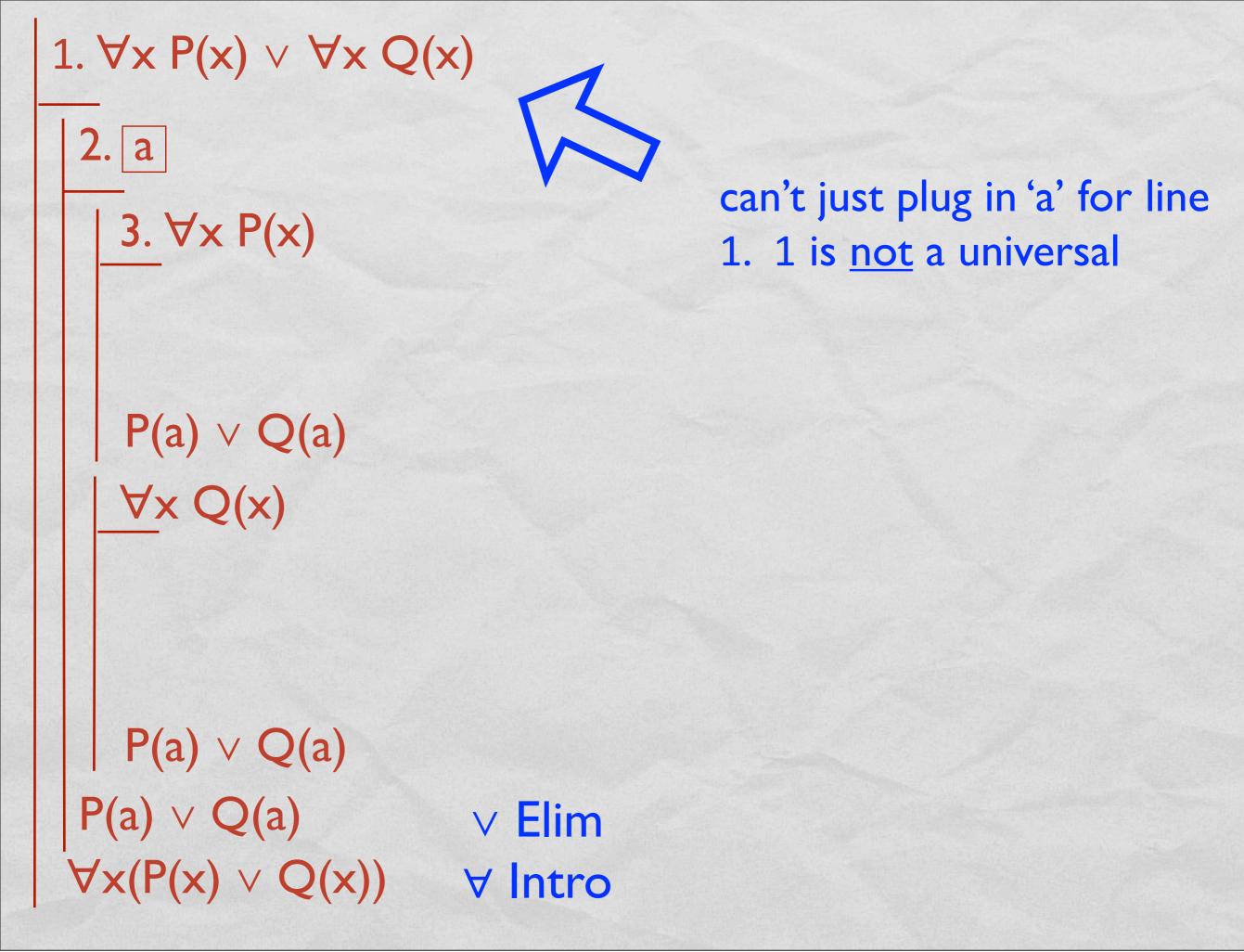
UNIVERSAL QUANTIFIER PROOFS

I. $\forall x(P(x) \rightarrow Q(x))$ 2. $\forall x(Q(x) \rightarrow R(x))$ 3. a 4. P(a) 5. $P(a) \rightarrow Q(a) \forall Elim I$ \rightarrow Elim 4,5 6. Q(a) 7. $Q(a) \rightarrow R(a) \forall Elim$ 8. R(a) Elim 6,7 9. $P(a) \rightarrow R(a)$ Intro 4-8 $\forall x(P(x) \rightarrow R(x)) \forall Intro$

'a' is totally arbitrary. We could have gotten this with any letter. e.g. $P(j) \rightarrow R(j)$

UNIVERSAL QUANTIFIER PROOFS

I. $\forall x(P(x) \rightarrow Q(x))$ 2. $\forall x(Q(x) \rightarrow R(x))$ 3. a 4. P(a) 5. $P(a) \rightarrow Q(a) \forall Elim I$ 6. Q(a) \rightarrow Elim 4,5 7. Q(a) \rightarrow R(a) \forall Elim 2 → Elim 6,7 8. R(a) 9. $P(a) \rightarrow R(a) \rightarrow Intro 4-8$ 10. $\forall x(P(x) \rightarrow R(x)) \forall Intro 3-9$



1. $\forall x P(x) \lor \forall x Q(x)$	
2. a	
$3. \forall x P(x)$	
4 . P(a)	∀ Elim 3
5. $P(a) \vee Q(a)$ 6. $\forall x Q(x)$	v Intro 4
7. Q(a)	∀ Elim 6
8. $P(a) \vee Q(a)$	v Intro 7
9. P(a) \lor Q(a) 10. $\forall x(P(x) \lor Q(x))$	∨ Elim 1,3-5,6-8∀ Intro 2-9

EXISTENTIAL INTRODUCTION

- For any variable x, any wff P(x) and any constant c, if we show that P(c), we can conclude that ∃x P(x).
- Note: the constant c could even have been used in the proof already.

I. P(c)2. $\exists x P(x)$ $\exists Intro: I$

EXISTENTIAL ELIMINATION

- Existential elimination is like proof by cases, but with only one case representing an infinite number of cases.
- For a constant c naming an arbitrary object, any variable x, and any wff P(x), if we know that ∃x P(x), and we show in a subproof that Q (which does not contain 'c') follows from P(c), we can conclude that Q must be true (outside the subproof).
- Note: the constant c must be new. The step will only work if c only occurs within the subproof.

EXISTENTIAL ELIMINATION

And And Black And Alla

$$\begin{array}{c}
I. \exists x P(x) \\
2. c P(c) \\
... \\
j. Q \\
7. Q \qquad \exists Elim: 1, 2-j
\end{array}$$