
PUZZLE

Some	  inhabitants	  of	  the	  island	  of	  knights	  and	  knaves	  
are	  werewolves.	  	  Werewolves	  can	  be	  either	  knights	  or	  
knaves.	  	  You	  know	  that	  exactly	  one	  of	  A,B,C	  is	  a	  
werewolf.

1)	  Is	  the	  werewolf	  a	  knight	  or	  a	  knave?
2)	  If	  you	  had	  to	  travel	  with	  one	  at	  night,	  who	  would	  you	  
take?

A	  says	  “C	  is	  a	  werewolf”
B	  says	  “I	  am	  not	  a	  werewolf”
C	  says	  “At	  least	  two	  of	  us	  are	  knaves”
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SOUNDNESS THEOREM

SOUNDNESS THEOREM (for FT):

If {P1, P2, .... Pn} ⊢(in FT) C then
{P1, P2, .... Pn} tf-entails C

Negative Criterion
If {P1, P2, .... Pn} DOES NOT tf-entail C then

{P1, P2, .... Pn} ⊢(in FT) C

Thursday, October 7, 2010



COROLLARIES 

If {P1, P2, .... Pn} ⊢(in FT) C then
   {P1, P2, .... Pn} tf-entails C

If {} ⊢(in FT) C [=def C is a theorem of FT] then
   {} tf-entails C [= C is a tautology]

If {P1, P2, .... Pn} DOES NOT tf-entail C then
   {P1, P2, .... Pn} ⊢(in FT) C

All satisfiable sets are consistent        or contrapositively
All inconsistent sets are unsatisfiable
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SOUNDNESS OF A WHOLE SYSTEM

You can show that none of ∧E ∧I ∨E ∨I →E →I ↔E 
↔I ⊥E ⊥I ¬E ¬I reit or making an assumption can 
introduce the first invalid step so there can’t be any 
invalid steps anywhere in any proof (that uses just 
these steps).

So the last line of the proof is a valid step so the 
conclusion really does follow from the premises on 
the assumption that there is a legal proof.

So we say that the system, FT is sound.
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WHAT ABOUT OTHER SYSTEMS?

We know that the system FT is sound.

What if we weren’t allowed to us the ¬Intro rule?  
Obviously the resulting system would still be sound.  
You could still prove only valid arguments.  You can 
just prove less of them.

But what if we allowed ourselves other rules - like 
DeMorgan’s Laws.  Would the system still be sound?
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FT+DEM

Call FT+DeM the system that results from allowing any 
rules in FT and also allows the following rule:

1. ¬(P∨Q)

 2. ¬P∧¬Q       DeM 1

IsFT+DeM sound?

Answer: YES 

Anything proved in FT+DeM really is a valid argument 
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FT+DEM

One way to show soundness is to show that you 
can’t prove anything new - anything provable in       
FT+DeM is also provable in FT (but perhaps the proof 
is longer).

But we could also directly proof the soundness of the 
rule: Assuming that A1, A2, ... Ak really does entail        
¬(P∨Q), then A1, A2, ... Ak (plus possibly more) really 
does entail ¬P∧¬Q.  

So DeM can’t introduce the FIRST invalid step.
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FT+XOR

1. P∨Q

 2. P     

 3. ¬Q       xor 1,2

IsFT+xor sound?

Answer: NO 

xor CAN introduce the 
first invalid step

For example, take the proof above.  Make P:T Q:T - now 
steps 1, 2 are valid (since they depend on themselves - the 
given assumptions) and step 3 is invalid.
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BAD RULES ARE REALLY BAD

If we had xor as a rule (plus the others) our system 
would be so terrible that it could prove anything at 
all.  

Example - feel like proving P?

1. ¬P
 2. ¬P∨¬P    ∨Intro 1     
 3. ¬¬P        xor 1,2   
 4. ⊥           ⊥ intro 1,3   

5. P              ¬Intro 1-4
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WHICH RULES WOULD BE OKAY?

If a rule represents a valid argument (one you could 
prove anyway by the other rules) then it is okay.

If a rule represents an invalid argument, or improperly 
messes with subproofs (reaching into a closed 
subproof, ending two subproofs at the same time, 
etc.) it is a bad rule.

DeM, NegCon, DisjSyll, Modus Tollens, etc. all would 
be okay rules.  Affirming the consequent?  Terrible.
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COMPLETENESS THEOREM

As a matter of fact, the converse of soundness is true 
- if an argument is tf-valid, then you can do a proof in 
FT.

This is much harder to prove [take 3310 or read 
chapter 17].  But you can just assume it is true.

Since FT is sound and complete, you can prove all 
and only the tf-valid arguments.  Many other systems 
of natural deduction have this same quality.
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TRUTH-FUNCTIONAL 
COMPLETENESS

Is it possible to have a truth-functional sentence that 
we can’t express with our connectives?

A set of connectives is truth-functionally complete if 
they allow us to express any truth function.

We can express exactly one of A+B, neither A nor B, 
not both A+B, etc.  What about ‘either 2 or 5 of these 
7 variables are true’?

YES.  We can express ANY truth function of arbitrary 
size or complexity .
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TRUTH-FUNCTIONAL 
COMPLETENESS

Want a sentence true 
in exactly these cases?

How about:
(P∧Q∧R)∨(¬P∧Q∧R)∨(¬P∧Q∧¬R)

If a sentence’s truth is completely determined by the 
truth of its subsentences, then it is equivalent to a 
sentence like the above using just ¬, ∧, and ∨
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TRUTH-FUNCTIONAL 
COMPLETENESS

A set of connectives is truth-functionally complete if 
they allow us to express any truth function.

Theorem (in book): The set of Boolean Connectives              
{¬, ∧, and ∨} is truth-functionally complete. 

{¬ and ∨}, {¬ and ∧}, {¬ and →}, {⊥ and →}, are also 
truth-functionally complete.  Some combos, like           
{¬ and ↔} are not complete (you can’t express ‘A and B’ 

with only ¬ and ↔).

Awesome fact: “NAND” [↑] and “NOR” [↓] each by 
themselves are complete.
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NORMAL FORMS

For various reasons (like automated proof - or proofs 
of metatheorems like completeness) it is often useful 
to turn sentences into specific forms.

The book mentions three kinds - Negated Normal 
Form (1st step...) Conjunctive Normal Form, 
Disjunctive Normal Form
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NEGATION NORMAL FORM

A sentence is in negation normal form (NNF) when 
any ¬ applies to an atomic sentence and all literals are 
joined by ∧ or ∨ (and parentheses).  

Any sentence can be put into NNF by getting rid of 
→s and ↔s and then using double negation and 

DeMorgan’s Laws if necessary.
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CONJUNCTIVE NORMAL FORM

A sentence is in conjunctive normal form (CNF) iff it is 
a conjunction of one or more disjunctions of literals.

Any sentence in NNF can be put into CNF using the 
distribution rules.  

Distribution of ∨ over ∧:                                                    
A ∨ (B ∧ C)  ⇔  (A ∨ B) ∧ (A ∨ C)

(P∧Q)∨(R∧S) ⇔ [(P∧Q)∨R]∧[(P∧Q)∨S] ⇔       

[(P∨R)∧(Q∨R)] ∧ [(P∨S)∧(Q∨S)]
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DISJUNCTIVE NORMAL FORM

A sentence is in disjunctive normal form (DNF) iff it is 
a disjunction of one or more conjunctions of literals.

Any sentence in NNF can be put into DNF using the 
distribution of ∧ over ∨. 

Distribution of ∧ over ∨:                                                    
A ∧ (B ∨ C)  ⇔  (A ∧ B) ∨ (A ∧ C)

(P∨Q)∧(R∨S) ⇔ [(P∨Q)∧R]∨[(P∨Q)∧S] ⇔       

[(P∧R)∨(Q∧R)] ∨ [(P∧S)∨(Q∧S)]
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LIMITS OF TRUTH-FUNCTIONS

a is a cube

a ≠ b

b is not a cube This is provable if you add 
the identity rules

a is a cube

There are at least two things

b is not a cube
This is still not 
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LIMITS OF TRUTH-FUNCTIONS

All men are mortal

Socrates is mortal

Socrates is a man

No apples are rotten

Some fruits aren’t apples

Some fruits are rotten

All men are tall

Some tall people aren’t bald

Not every man is bald

For any number, there is a                     
     larger prime number

There is no largest prime number

None are truth-functionally valid
- We need a stronger logical system

Thursday, October 7, 2010



QUANTIFIERS

Two quantifier symbols:

∀ means “everything” or “for all”.

∃ means “something” or “there exists at least one”.

Just these two quantifiers can be used to capture 
many of the quantifications we want to talk about.  
For example, all, every, any, none, not all of, some, 
some are not, at least one, at least two, exactly two, 
etc.
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EXAMPLE SENTENCES

∀x Cube(x) - Everything is a cube
∃x Cube(x) - Something is a cube
∀x(Cube(x)∧Small(x)) - Everything is a small cube
∃x(Cube(x)∧Small(x)) - Something is a small cube

∀x(Cube(x)→Small(x)) - Every cube is small

∀x(Tet(x)→Cube(x)) - Every tet is a cube
¬∃x(Cube(x)∧Large(x)) - There aren’t any large cubes

Thursday, October 7, 2010


