
PUZZLE

Some	 inhabitants	 of	 the	 island	 of	 knights	 and	 knaves	
are	 werewolves.	 	 Werewolves	 can	 be	 either	 knights	 or	
knaves.	 	 You	 know	 that	 exactly	 one	 of	 A,B,C	 is	 a	
werewolf.

1)	 Is	 the	 werewolf	 a	 knight	 or	 a	 knave?
2)	 If	 you	 had	 to	 travel	 with	 one	 at	 night,	 who	 would	 you	
take?

A	 says	 “C	 is	 a	 werewolf”
B	 says	 “I	 am	 not	 a	 werewolf”
C	 says	 “At	 least	 two	 of	 us	 are	 knaves”

Thursday, October 7, 2010

PROPOSITIONAL LOGIC

Wednesday, 6 October

Thursday, October 7, 2010

SOUNDNESS THEOREM

SOUNDNESS THEOREM (for FT):

If {P1, P2, Pn} ⊢(in FT) C then
{P1, P2, Pn} tf-entails C

Negative Criterion
If {P1, P2, Pn} DOES NOT tf-entail C then

{P1, P2, Pn} ⊢(in FT) C

Thursday, October 7, 2010

COROLLARIES

If {P1, P2, Pn} ⊢(in FT) C then
 {P1, P2, Pn} tf-entails C

If {} ⊢(in FT) C [=def C is a theorem of FT] then
 {} tf-entails C [= C is a tautology]

If {P1, P2, Pn} DOES NOT tf-entail C then
 {P1, P2, Pn} ⊢(in FT) C

All satisfiable sets are consistent or contrapositively
All inconsistent sets are unsatisfiable

Thursday, October 7, 2010

SOUNDNESS OF A WHOLE SYSTEM

You can show that none of ∧E ∧I ∨E ∨I →E →I ↔E
↔I ⊥E ⊥I ¬E ¬I reit or making an assumption can
introduce the first invalid step so there can’t be any
invalid steps anywhere in any proof (that uses just
these steps).

So the last line of the proof is a valid step so the
conclusion really does follow from the premises on
the assumption that there is a legal proof.

So we say that the system, FT is sound.

Thursday, October 7, 2010

WHAT ABOUT OTHER SYSTEMS?

We know that the system FT is sound.

What if we weren’t allowed to us the ¬Intro rule?
Obviously the resulting system would still be sound.
You could still prove only valid arguments. You can
just prove less of them.

But what if we allowed ourselves other rules - like
DeMorgan’s Laws. Would the system still be sound?

Thursday, October 7, 2010

FT+DEM

Call FT+DeM the system that results from allowing any
rules in FT and also allows the following rule:

1. ¬(P∨Q)

 2. ¬P∧¬Q DeM 1

IsFT+DeM sound?

Answer: YES

Anything proved in FT+DeM really is a valid argument

Thursday, October 7, 2010

FT+DEM

One way to show soundness is to show that you
can’t prove anything new - anything provable in
FT+DeM is also provable in FT (but perhaps the proof
is longer).

But we could also directly proof the soundness of the
rule: Assuming that A1, A2, ... Ak really does entail
¬(P∨Q), then A1, A2, ... Ak (plus possibly more) really
does entail ¬P∧¬Q.

So DeM can’t introduce the FIRST invalid step.

Thursday, October 7, 2010

FT+XOR

1. P∨Q

 2. P

 3. ¬Q xor 1,2

IsFT+xor sound?

Answer: NO

xor CAN introduce the
first invalid step

For example, take the proof above. Make P:T Q:T - now
steps 1, 2 are valid (since they depend on themselves - the
given assumptions) and step 3 is invalid.

Thursday, October 7, 2010

BAD RULES ARE REALLY BAD

If we had xor as a rule (plus the others) our system
would be so terrible that it could prove anything at
all.

Example - feel like proving P?

1. ¬P
 2. ¬P∨¬P ∨Intro 1
 3. ¬¬P xor 1,2
 4. ⊥ ⊥ intro 1,3

5. P ¬Intro 1-4

Thursday, October 7, 2010

WHICH RULES WOULD BE OKAY?

If a rule represents a valid argument (one you could
prove anyway by the other rules) then it is okay.

If a rule represents an invalid argument, or improperly
messes with subproofs (reaching into a closed
subproof, ending two subproofs at the same time,
etc.) it is a bad rule.

DeM, NegCon, DisjSyll, Modus Tollens, etc. all would
be okay rules. Affirming the consequent? Terrible.

Thursday, October 7, 2010

COMPLETENESS THEOREM

As a matter of fact, the converse of soundness is true
- if an argument is tf-valid, then you can do a proof in
FT.

This is much harder to prove [take 3310 or read
chapter 17]. But you can just assume it is true.

Since FT is sound and complete, you can prove all
and only the tf-valid arguments. Many other systems
of natural deduction have this same quality.

Thursday, October 7, 2010

TRUTH-FUNCTIONAL
COMPLETENESS

Is it possible to have a truth-functional sentence that
we can’t express with our connectives?

A set of connectives is truth-functionally complete if
they allow us to express any truth function.

We can express exactly one of A+B, neither A nor B,
not both A+B, etc. What about ‘either 2 or 5 of these
7 variables are true’?

YES. We can express ANY truth function of arbitrary
size or complexity .

Thursday, October 7, 2010

TRUTH-FUNCTIONAL
COMPLETENESS

Want a sentence true
in exactly these cases?

How about:
(P∧Q∧R)∨(¬P∧Q∧R)∨(¬P∧Q∧¬R)

If a sentence’s truth is completely determined by the
truth of its subsentences, then it is equivalent to a
sentence like the above using just ¬, ∧, and ∨

Thursday, October 7, 2010

TRUTH-FUNCTIONAL
COMPLETENESS

A set of connectives is truth-functionally complete if
they allow us to express any truth function.

Theorem (in book): The set of Boolean Connectives
{¬, ∧, and ∨} is truth-functionally complete.

{¬ and ∨}, {¬ and ∧}, {¬ and →}, {⊥ and →}, are also
truth-functionally complete. Some combos, like
{¬ and ↔} are not complete (you can’t express ‘A and B’

with only ¬ and ↔).

Awesome fact: “NAND” [↑] and “NOR” [↓] each by
themselves are complete.

Thursday, October 7, 2010

NORMAL FORMS

For various reasons (like automated proof - or proofs
of metatheorems like completeness) it is often useful
to turn sentences into specific forms.

The book mentions three kinds - Negated Normal
Form (1st step...) Conjunctive Normal Form,
Disjunctive Normal Form

Thursday, October 7, 2010

NEGATION NORMAL FORM

A sentence is in negation normal form (NNF) when
any ¬ applies to an atomic sentence and all literals are
joined by ∧ or ∨ (and parentheses).

Any sentence can be put into NNF by getting rid of
→s and ↔s and then using double negation and

DeMorgan’s Laws if necessary.

Thursday, October 7, 2010

CONJUNCTIVE NORMAL FORM

A sentence is in conjunctive normal form (CNF) iff it is
a conjunction of one or more disjunctions of literals.

Any sentence in NNF can be put into CNF using the
distribution rules.

Distribution of ∨ over ∧:
A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ (A ∨ C)

(P∧Q)∨(R∧S) ⇔ [(P∧Q)∨R]∧[(P∧Q)∨S] ⇔

[(P∨R)∧(Q∨R)] ∧ [(P∨S)∧(Q∨S)]

Thursday, October 7, 2010

DISJUNCTIVE NORMAL FORM

A sentence is in disjunctive normal form (DNF) iff it is
a disjunction of one or more conjunctions of literals.

Any sentence in NNF can be put into DNF using the
distribution of ∧ over ∨.

Distribution of ∧ over ∨:
A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C)

(P∨Q)∧(R∨S) ⇔ [(P∨Q)∧R]∨[(P∨Q)∧S] ⇔

[(P∧R)∨(Q∧R)] ∨ [(P∧S)∨(Q∧S)]

Thursday, October 7, 2010

LIMITS OF TRUTH-FUNCTIONS

a is a cube

a ≠ b

b is not a cube This is provable if you add
the identity rules

a is a cube

There are at least two things

b is not a cube
This is still not

Thursday, October 7, 2010

LIMITS OF TRUTH-FUNCTIONS

All men are mortal

Socrates is mortal

Socrates is a man

No apples are rotten

Some fruits aren’t apples

Some fruits are rotten

All men are tall

Some tall people aren’t bald

Not every man is bald

For any number, there is a
 larger prime number

There is no largest prime number

None are truth-functionally valid
- We need a stronger logical system

Thursday, October 7, 2010

QUANTIFIERS

Two quantifier symbols:

∀ means “everything” or “for all”.

∃ means “something” or “there exists at least one”.

Just these two quantifiers can be used to capture
many of the quantifications we want to talk about.
For example, all, every, any, none, not all of, some,
some are not, at least one, at least two, exactly two,
etc.

Thursday, October 7, 2010

EXAMPLE SENTENCES

∀x Cube(x) - Everything is a cube
∃x Cube(x) - Something is a cube
∀x(Cube(x)∧Small(x)) - Everything is a small cube
∃x(Cube(x)∧Small(x)) - Something is a small cube

∀x(Cube(x)→Small(x)) - Every cube is small

∀x(Tet(x)→Cube(x)) - Every tet is a cube
¬∃x(Cube(x)∧Large(x)) - There aren’t any large cubes

Thursday, October 7, 2010

