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Law and Explanation in Biology: 
Invariance is the Kind of Stability 

That Matters* 

Jim Woodwardtt 
Division of Humanities and Social Sciences 

California Institute of Technology 

This paper develops an account of explanation in biology which does not involve appeal 
to laws of nature, at least as traditionally conceived. Explanatory generalizations in 
biology must satisfy a requirement that I call invariance, but need not satisfy most of 
the other standard criteria for lawfulness. Once this point is recognized, there is little 
motivation for regarding such generalizations as laws of nature. Some of the differences 
between invariance and the related notions of stability and resiliency, due respectively 
to Sandra Mitchell and Brian Skyrms, are explored. 

1. Introduction. Are there laws in biology? This is a question that has 
attracted a great deal of attention recently from philosophers of biology.' 
My aim in this paper is twofold. First, I want to illustrate how the account 
of explanation and invariance that I have applied elsewhere to examples 
from the physical and social sciences can also be applied to biological 
examples, and to explore the implications of that account for the role of 
laws in biology. Second, I want to compare my account with some related 
ideas, due to Sandra Mitchell and to Brian Skyrms, about the role of 
stability in assessments of lawfulness. 

*Received August 2000; revised November 2000. 

tSend reprint requests to the author, Division of Humanities and Social Sciences, 101- 
40, California Institute of Technology, Pasadena, CA 91125. 

tEarlier versions of this paper were read at MIT and at the University of Pittsburgh. 
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Brandon 1997, Cooper 1998, Sober 1997, Waters 1998. 
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2. Mitchell on Lawfulness and Stability. In a recent series of papers (1997, 
2000), Sandra Mitchell has argued that to answer the question of whether 
there are laws in biology we need to rethink the notion of law and its role 
in biological practice. She advocates replacing the standard law vs. acci- 
dent dichotomy with a framework for the classification of explanatory 
generalizations that admits of degrees. One of the "dimensions" of sci- 
entific law which receives the most attention within this framework is what 
Mitchell calls stability, which is roughly the extent to which a generaliza- 
tion is contingent on conditions that are stable across space and time. 
According to Mitchell, biological generalizations like Mendel's laws are 
less stable (more contingent) than, say, paradigmatic fundamental physi- 
cal laws like the conservation of mass-energy but more stable than gen- 
eralizations like: 

(2.1) All the coins in Goodman's pockets are copper. 

Biological generalizations thus occupy an intermediate position on the 
"continuum of contingency". They are stable enough to play the same 
sort of role that laws play in other areas of science: they can function so 
as to represent "causal knowledge" and can be used to predict, explain 
and to guide interventions. (2000, 249) Because biological generalizations 
can function in these ways, we may legitimately describe them as laws, 
even if they lack features, such as exceptionlessness, traditionally ascribed 
to laws. 

As Mitchell notes, these ideas are similar in a number of ways to ideas 
that I have defended elsewhere (see e.g., Woodward 1997, 2000). Like her, 
I have argued that the traditional way of thinking about generalizations 
in the special sciences (including biology) in terms of an all or nothing 
law/accident dichotomy is misguided. Like her, I too favor replacing this 
dichotomy with a framework for the classification of explanatory gener- 
alizations that admits of degrees. Moreover, as Mitchell notes, her notion 
of stability bears a family resemblance both to the notion of invariance 
(understood as the stability of a relationship under some set of interven- 
tions) which plays a central role in the approach that I advocate, and to 
Brian Skryms' notion of resiliency (Skyrms 1980). Despite this general 
similarity, I will suggest (Sections 8 and 9) that invariance, stability, and 
resiliency differ in important respects and that we need the notion of in- 
variance rather than stability or resiliency if we are to distinguish ade- 
quately between explanatory and non-explanatory generalizations. More 
generally, while I agree with Mitchell that some notion of stability or 
robustness is the right notion to look at if we are to understand how 
biological generalizations function in explanation, I will try to show that 
the details of how exactly we understand this notion matter crucially. 
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3. Background. In the recent literature on whether there are laws in biol- 
ogy, genuinely substantive issues are often entangled with issues that seem 
largely verbal or terminological-in particular, issues about how strictly 
or permissively we should use the word "law." Like Mitchell, I think that 
the key to separating substantive from terminological issues is to ask what 
turns on whether we take generalizations like Mendel's to be laws of na- 
ture or to have some other status. What role or function do laws play that 
could not be played by non-lawful generalizations? My assumption in 
what follows is that much of the interest in this question derives from the 
idea that laws are required for successful explanation (or what I shall take 
to be the same thing) the representation of causal relationships; hence that 
the status of biology as an explanatory rather than a "merely descriptive" 
science turns on whether it contains laws. I thus begin with some moti- 
vating background and stage setting regarding the notions of "explana- 
tion" and "law." 

Despite the vicissitudes of the DN model of explanation and its more 
recent descendants, the majority of philosophers probably continue to 
subscribe to the thesis that all explanation in some way requires or "in- 
volves" laws of nature. Much of the appeal of this nomothetic thesis (as 
I shall call it) derives from the fact that it seems undeniable that general- 
izations play an important role in many explanations and we lack a gen- 
erally accepted positive theory of how generalizations function in expla- 
nation except as laws. In the absence of such an alternative account, even 
philosophers who are well aware of the great distance between the gen- 
eralizations that figure in explanations in biology and the other so-called 
special sciences, and paradigmatic examples of physical laws feel forced 
to assimilate the former to the latter. If we want to vindicate the idea that 
generalizations like Mendel's laws can be used to explain and the only 
possibilities are such generalizations are either laws of nature or com- 
pletely accidental and non-explanatory, we seem to have no alternative 
but to try to shoe-horn them into the category of laws of nature, however 
awkward the fit may be. 

This dialectical situation is further complicated by the fact that there is 
no consensus on what features a generalization must possess if it is to 
count as a law.2 While there are of course a number of familiar and fre- 
quently invoked criteria for lawfulness, some of these (such as the require- 
ment that laws be exceptionless) are violated by paradigmatic laws while 
others, at least as standardly formulated, fail to distinguish between ac- 
cidental and lawful generalizations.3 
2. Both the absence of consensus and the limitations of some of the standard criteria 
for lawfulness are discussed in Salmon 1989. 
3. This is true, for example, of the suggestion that laws "support" counterfactuals while 
accidental generalizations do not; see section 5. 
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Absent such a consensus, we lack a clear purchase on what we are ar- 
guing about when we ask whether there are laws in biology. In view of this, 
I propose to bypass the question of what sorts of features a generalization 
should possess in order for it to count as a "law" (and whether biological 
generalizations possess those features) and to focus instead on the following 
question: what are the characteristics that a generalization must possess if 
it is to figure in explanations? I take this to be the substantive issue that 
lurks behind the terminological disputes in the recent philosophical litera- 
ture about how permissively we should use the word "law." 

In order to answer this question I begin with a very brief sketch of some 
ideas about explanation that I have described in more detail elsewhere. 
My interest here is not in providing a defense of these ideas but rather in 
illustrating how they may be applied to the issue of how generalizations 
function in biological explanation.4 

4. Explanation, Invariance, and Laws. On my view, the key feature that a 
generalization must possess if it is to figure in explanations is invariance. 
Invariance is a kind of robustness or stability property: a generalization 
is invariant if and only if it would continue to hold under some range of 
physical changes involving interventions. Heuristically, the notion of an 
intervention represents an attempt to capture, in non-anthropomorphic 
language that makes no reference to notions like human agency, the con- 
ditions that would need to be met in an ideal experimental manipulation 
of the value of some variable X performed for the purpose of determining 
whether X causes a second variable Y. Slightly more precisely, an inter- 
vention on X (with respect to Y) is a causal process that directly changes 
the value of X in such a way that, if a change in the value of Y should 
occur, it will occur only through the change in the value of X and not in 
some other way. This in turn requires, for example, that the intervention 
not be correlated with other causes of Y except for those causes of Y (if 
any) that are causally between Xand Yand that the intervention not affect 
Y independently of X-that is, the intervention should not affect Y via a 
causal route that does not go through X. As an illustration suppose that 
(4.1) X is a common cause of Y and Z . Then a manipulation of X that 
changes Y will not count as an intervention on Y with respect to Z, since 
in this case the manipulation affects Z via a route (the route that directly 
connects X to Z) that does not go through Y.5 On the other hand, if, in 
such a common cause structure, we were to change the value of Yby means 

4. Readers interested in a fuller defense of these ideas are referred to Woodward 2000. 

5. For a more precise characterization of the notion of an intervention and of the 
notions of a causal route and causal betweeness in interventionist terms, see Woodward 
2000 and Woodward forthcoming. 
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of some randomizing device that is not correlated with and is causally 
independent of changes in the value of X, and also does not directly affect 
Z, this would count as an intervention on Y. 

A generalization that relates changes in (or describes a correlation be- 
tween) one set of variables and another is invariant if and only if it would 
continue to hold (or would be stable) under some intervention on variables 
figuring in that relationship. For example, if X is genuinely a cause of Y 
in the common cause structure (4.1), we would expect the generalization 
describing how changes in X are correlated with changes in Y to be in- 
variant under at least some interventions that change X. By contrast, the 
correlation between the joint effects Y and Z of the common cause X is 
not invariant under any interventions on Y (or Z), since all such interven- 
tions will disrupt the relationship between Y and Z. 

What is the connection between invariance and explanation? On my 
view, to explain an explanandum is to show how changes in it counter- 
factually depend on changes in the factors cited in the explanans, or to 
express the same idea in a slightly different way, to show how the explan- 
andum would have been different if the factors cited in its explanans had 
been different in various ways. The relevant notion of counterfactual de- 
pendence (or of answering a what-if things-had-been- different question) 
is captured by counterfactuals the antecedents of which have to do with 
interventions: to explain why an explanandum Y takes some particular 
value we need to identify some variable X and a generalization G linking 
X to Y such that, according to G, some range of changes in the value of 
X that are due to interventions are associated with changes in the value 
of Y. This requires that the generalization G must be invariant under some 
interventions on X that change the value of Y. 

When a generalization relating X and Y is invariant in this way, we 
may think of it as telling us how to manipulate Y if (perhaps contrary to 
actual fact) it were possible to intervene to change X. In this sense the 
theory just sketched embodies a "manipulationist" conception of expla- 
nation. Thus, in the common cause example above, one cannot appeal to 
the value of Y and the correlation between Y and Z to explain the value 
of Z because intervening on the value of Y is not a way of manipulating 
the value of Z. 

It should be clear from these remarks why explanatory generalizations 
need to be invariant under interventions rather than meeting some other 
stability condition. The correlation between Yand Z in the common cause 
example (4.1) is stable or would continue to hold under many sorts of 
changes. For example, it is stable under changes in the value of Yproduced 
by changes in X as well as under changes in such background conditions 
as the price of tea in China. Mere stability under some or even many 
changes is not sufficient for explanatoriness. 
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What implications does this account have for the role of laws in expla- 
nation? Paradigmatic laws, such as the field equations of General Relativity, 
are invariant generalizations and it is their invariance that endows them 
with explanatory import. Nomothetic models of explanation are thus cor- 
rect in insisting that laws play a central role in some explanations. However, 
as we shall also see, a generalization can be invariant and hence figure in 
explanations even though it differs in important respects from paradigmatic 
laws and even though it fails to satisfy many of the traditional criteria for 
nomological status.6 On my view, Mendel's laws, as well as many other ex- 
planatory generalizations drawn from the special sciences, have exactly this 
character. Among the traditional criteria for lawhood, only one-support 
for counterfactuals-is directly relevant to the question of whether a gen- 
eralization is invariant and even this criterion requires considerable rein- 
terpretation if it is to be acceptable (cf. Section 5). In particular, a gener- 
alization may be invariant and hence explanatory even if it has exceptions, 
even if it makes reference to particular objects and spatio-temporal loca- 
tions, and even if it is not part of any systematic or unified theory. Con- 
versely, a generalization can fail to be invariant even if it is exceptionless, 
contains purely qualitative predicates, is confirmable by a limited number 
of instances, and plays a central, unifying role in some theory. 

Seen from the perspective of the invariance-based approach, the fuzz- 
iness and inadequacy of the traditional criteria for lawfulness are neither 
surprising nor alarming. If what we are interested in is which generaliza- 
tions can figure in explanations, we don't have to address the question of 
whether such generalizations are "laws" and hence we don't need to settle 
the issue of which of the traditional criteria are defensible. Instead, we can 
simply bypass the traditional criteria and focus directly on the question 
of whether the generalizations of interest are invariant in the right way. 
In other words, it simply doesn't matter, independently of whether or not 
generalizations like Mendel's are invariant, whether we choose to regard 
them as genuine laws. We can, if we wish, stipulate that the word "law" 
must be used in such a way that all invariant generalizations are laws. If 
so, because they are invariant, Mendel's laws and many other biological 
generalizations will qualify as laws and the nomothetic thesis will be cor- 
rect. Alternatively, we may choose to regard similarity to paradigmatic 
laws and satisfaction of most of the traditional criteria as necessary for 
lawhood. If so, generalizations like Mendel's will probably not count as 
laws. Nonetheless, as long as such generalizations are invariant in the right 

6. It is also the case that an argument can meet the requirements for DN explanation 
and yet fail to provide information about counterfactual dependence and hence fail to 
be explanatory. Standard counterexamples to the DN model, involving explanatory 
irrelevancies or asymmetries, have this character (as argued in Woodward 2000). 
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way, they can figure in explanations. I take this to explain Ernst Mayr's 
observation that the question of whether there are laws in biology "is of 
little relevance for the working biologist" (1982, 32; quoted in Mitchell 
2000, 249). 

5. Explanation and Invariance in Biology. I turn now to some biological 
illustrations of these ideas involving Mendel's "law" of segregation: 

(S) With respect to each pair of genes in a sexual organism, 50% of the 
organism's gametes will carry one representative of that pair and 50% 
will carry the other representative of that pair. 

There are of course obvious dangers associated with generalizing from a 
single case. On the other hand, (i) space is limited, (ii) a very large portion 
of the recent discussion of whether there are laws in biology has focused 
on the status of this very generalization, (iii) the case for the account of 
explanation I favor and the role of invariance is, if anything, much easier 
to make in other areas of biology, such as molecular biology, where the 
association between successful explanation and the identification of in- 
variant relationships that are potentially exploitable for purposes of ma- 
nipulation and control is often explicitly made by biologists themselves.7 

I begin by reminding the reader of some of the ways in which (S) figures 
in elementary explanatory evolutionary models. First, from (S) and the 
assumption of random mating, one can derive the so-called Hardy- 
Weinberg law, which tells us that in the absence of various evolutionary 
forces-mutation, migration, drift and selection-genotypic frequencies 
will reach equilibrium after one generation with the equilibrium frequen- 
cies depending on the allele frequencies with which we began. One can 
then use the Hardy-Weinberg law in conjunction with additional assump- 
tions about differential fitness of various genotypes to explain how the 
frequencies of those genotypes will change in response to natural selection. 
Consider a single locus model in which the A allele is dominant and the a 
allele recessive with the Aa genotype identical in phenotype and fitness to 
the AA genotype and both superior in fitness to the aa genotype. By using 
(S) and the other assumptions of this model one can readily derive that 
after one generation the frequency of a will decrease by an amount that 
is a function of its initial frequency and it relative fitness. In particular, 
the change Aq in allele frequency a of will be: 

(5.1) Aq = q (1 - wq2)/ 1 - wq2 - (q - wq2)/1 - wq2 = 
- wpq2/1 - wq2 

where p is the initial frequency of the A allele, q the frequency of the a 

7. As an illustration, see Weinberg (1985). 
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allele and w the relative fitness of the recessive homozygote. With no 
changes in relative frequencies this process will continue in subsequent 
generations until the a allele is eliminated. By contrast, in the frequently 
discussed case of heterozygote superiority, in which the heterozygote Aa 
is more fit then either of the homozygotes AA and aa, one can show that 
selection will lead to a polymorphic equilibrium in which both the A and 
a alleles are maintained in the population, the frequency of each being a 
function of the fitnesses of the various genotypes. 

Models and derivations of this sort are commonly regarded as explain- 
ing why gene frequencies change or fail to change over time. Following 
the remarks in Section 4, I suggest that what makes such derivations ex- 
planatory is that they answer a set of counterfactual or what-if-things- 
had-been-different questions about their explananda. This gives us a sense 
for the factors or conditions on which these explananda depend. For ex- 
ample, given the assumptions that figure in the derivation of the Hardy- 
Weinberg law, one can see that changing the values of the initial allelic 
frequencies will not change whether an equilibrium is reached but will 
change the genotype equilibrium frequencies-we can see how these fre- 
quencies would have been different if the initial allelic frequencies had 
been different. We can also see from this derivation how matters would 
be different in populations that do not conform to Mendelian segregation. 
In such populations even in the absence of migration, selection, etc., the 
Hardy-Weinberg law will not hold. Instead, one form of the gene will 
completely replace the other form in the population. 

Similarly, in the case in which there is selection operating at a single 
locus against a recessive homozygote one can see how the outcome would 
(or would not) have been different in various ways if the initial frequencies 
p and q of the alleles A and a and the relative fitness w of the recessive 
homozygote had been different. In particular, the derivation shows us that 
provided selection is allowed to run on long enough, and no counteracting 
forces are operative, the recessive homozygote will always be eliminated 
regardless of the particular values of p, q and w. By contrast, the rate at 
which the allelic frequencies change in response to selection depends on 
the exact value of the selection coefficient w and the initial allelic frequen- 
cies. In this case, as well as in the previous examples, the model shows us 
how the change Aq in allelic frequency per generation would change if the 
value of w or q were changed-that is, how Aq would have been different 
had such changes occurred. 

Parallel remarks apply to case of heterozygote dominance. Here too, 
the sort of model described above allows us to see what the maintenance 
of polymorphic equilibrium depends on and how the equilibrium fre- 
quency would be different in various ways, depending on the relative fit- 
ness of the heterozygote in comparison with two homozygotes. 
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Suppose that we agree that above explanations involving (S) work by 
conveying counterfactual information in the manner just described. What 
features must (S) possess if it is to play a role in conveying such infor- 
mation? As suggested above, the key feature is that (S) must be stable or 
invariant in the right way in the population P. We can motivate this re- 
quirement in the following way. Since the general explanatory strategy 
employed in the models described above works by using (S) in conjunction 
with information about initial genotype frequencies and the fitness of vari- 
ous genotypes to explain patterns of changes in those frequencies, (S) must 
not only hold for the actual values of the genotype frequencies and fit- 
nesses in P but must also be such that it continues to hold (at least ap- 
proximately) under some range of changes in the values of those frequen- 
cies and fitnesses in P. That is, it should be true that some range of changes 
in, say, the frequency of the Aa genotype or in its relative fitness in P do 
not by themselves disrupt (at least over the time scale of changes in gene 
frequency we are trying to explain) the mechanism of normal Mendelian 
segregation. If (S) were to hold when, say, the initial frequency of the a 
allele in P is q* but were to break down when the frequency of a differed 
significantly from q* , (S) would not be invariant under changes in q in P 
and we could not appeal to it in support of counterfactual claims about 
the conditions under which the frequency of q would change. Similarly, if 
(S) were to hold only when the relative fitness of the Aa and aa genotype 
in P took certain very restricted values, but not more generally, the models 
described above would no longer show us how the rate of allelic frequency 
change depends on w. This condition-that (S) is such that it is invariant 
or would continue to hold under changes in q and w-is plausible for many 
populations conforming to (S). The mere fact that a genotype becomes 
more or less fit as a consequence of some environmental change or that it 
increases or decreases in frequency will not by itself cause a shift from 
Mendelian to non-Mendelian patterns of segregation. 

I emphasize that what matters for the use of (S) to explain gene fre- 
quencies in some particular population P is whether (S) is invariant in the 
right way under interventions in P and not whether various other popu- 
lations, different from P, conform to (S). In other words, the counterfac- 
tuals that matter for successful explanation, both in this case and more 
generally, have to do with what would happen under interventions that 
change the values of the explanans variables for the very system whose 
behavior we are trying to explain (what we might call "same object coun- 
terfactuals") , rather than with counterfactuals that describe the behavior 
of other systems ("other object counterfactuals").8 If, as I claim, explan- 

8. Many patently accidental generalizations "support" counterfactuals in some sense. 
For example, (5.4) "All of the balls in this urn are red" seems to support the counter- 

9 



JIM WOODWARD 

atory generalizations are required only to support same object counter- 
factuals, they may correctly describe what would happen under interven- 
tions in some system of interest while failing to correctly describe (or while 
failing to apply to) the behavior of other systems. The idea that same 
object counterfactuals are the relevant ones from the point of view of 
explanation thus goes along with the intuition (which I mean to endorse) 
that the explanatory status of Mendel's laws with respect to those popu- 
lations that do exhibit Mendelian segregation is not impugned by the ex- 
istence of other populations for which those laws fail to hold. 

6. Degrees of Invariance and Explanatory Depth. The conditions on expla- 
nation described above require that explanatory generalizations be invar- 
iant under some (but not necessarily all) interventions. Thus, in the exam- 
ples above, it is not necessary, in order for (S) to be explanatory, that it be 
invariant under all possible interventions or changes in background con- 
ditions. Instead, it is necessary only that (S) tell us how gene frequencies 
would change under some range of interventions on initial frequencies and 
fitnesses. This use of the existential rather than the universal quantifier re- 
flects an important feature of the notion of invariance that is crucial to its 
usefulness. This is that invariance is a relative notion or a matter of degree 
rather than an absolute or all-or-nothing notion: a generalization can be 
invariant under some interventions but not others. This feature of the no- 
tion of invariance allows us to avoid various problems that are due to the 
dichotomous character of the traditional law vs. accident framework. 

Consider a non-biological illustration: a particular sort of spring S con- 
forming to a version of Hooke's law (H) F = - kX where X is the exten- 
sion of the spring, F the restoring force it exerts, and k a constant char- 
acteristic of springs of sort S. Suppose that (H) is invariant under some 
range of interventions that change X for springs of sort S within the in- 
terval between x, and x2. This means that (H) correctly describes what the 
restoring force of the spring would be under experimental manipulations 
of the extension of the spring within this interval. Nonetheless, it is clear 
that if we intervene to make the extension of the spring too large, the 
generalization (H) will break down-the spring will no longer exert a lin- 
ear restoring force and in fact may break. While (H) is invariant under 
some interventions on the extension of springs of sort S, it is not invariant 

factual (5.5) "If a ball were to be withdrawn from this urn it would be red." The account 
developed above associates the non-explanatory status of (5.4) with its failure to sup- 
port "same object" counterfactuals involving interventions: it is not true that an inter- 
vention that changes whether a ball is in the urn will change whether it is red. Examples 
like this show that to merely ask whether a generalization has "counterfactual force" 
in evaluating its explanatory status is insufficiently discriminating-it matters crucially 
whether the right sort of counterfactual is supported. 
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under all such interventions. (H) will also break down under certain 

changes in background conditions-changes in variables that do not ex- 

plicitly figure in (H)-such as extreme temperatures. In addition, (H) has 
narrow scope-there are many other sorts of springs whose behavior is 
not governed by (H). In all these respects, (H) is typical of most explan- 
atory generalizations in the special sciences, including (S). 

Nonetheless, despite the fact that (H) is not exceptionless and has nar- 
row scope (and hence lacks several of the features traditionally required 
of laws of nature), we may, according to the account of explanation de- 
scribed above, appeal to (H) and to the extension X= x, of some particular 
spring s of sort S to explain why it exerts a restoring force of magnitude 
F =f as long as the conditions described above are met-as long, that is 
as (H) holds for the actual extension and force exerted by the spring and 
as long as (H) is invariant under some range of interventions that changes 
the value of X from X= x to some new value. Clearly, these conditions 
can be met even if (H) fails to be invariant under various other changes 
in its extension. A similar point holds for (S). 

Although it seems plausible that (H) can be used to explain why some 

particular spring conforming to (H) exerts the restoring force that it does, 
such an explanation strikes us as rather shallow. I fully agree with this 
assessment and see it as closely connected to the fact that (H) is invariant 
under only a rather limited range of interventions. In my view, a deeper 
explanation of the behavior of the spring would be provided by a set of 

generalizations that are invariant under (what we might intuitively regard 
as) a wider or more important range of interventions and that might be 
used to answer a wider range of what-if-things-had-been-different ques- 
tions about the spring.9 

The picture that emerges from all of this thus involves both a contin- 
uum and a threshold. Some generalizations, such as (2.1) or (4.1) above 
are not invariant under any interventions at all and hence are not explan- 
atory. In addition we can distinguish among generalizations that are in- 
variant under at least some interventions with respect to the range or kind 
of interventions under which they are invariant. Fundamental laws which 
are invariant under a wide range of interventions are at one end of this 
continuum; generalizations like (H) are closer to the other end. 

7. Invariance and Explanation in Biology Revisited. With the example of 

(H) and the idea that a generalization can be invariant under some but 
not all interventions and hence explanatory firmly in mind, let us return 
to the question of the status of Mendel's generalizations. In a very inter- 

9. For an attempt to be more precise about the notion of invariance under a wide range 
of interventions, see Woodward 2000, and Hitchcock and Woodward forthcoming. 
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esting series of papers (e. g., 1995) John Beatty has advanced what he calls 
the Evolutionary Contemporary Thesis, according to which "all general- 
ization about the living world are [either] just mathematically, physical or 
chemical generalizations or [if they are] distinctively biological describe 
contingent outcomes of evolution" (46-47). He takes this to mean that 
"there are no laws of biology. For whatever laws are, they are supposed 
to be more than just contingently true." (46) 

Beatty illustrates this thesis by drawing attention to two related features 
of Mendel's law of segregation. First it has a number of "exceptions." One 
of best known involves meiotic drive, which occurs when an allele influ- 
ences meiosis in such away that it has a greater than 50% chance of ending 
up in a gamete, rather than the 50% chance that Mendelian segregation 
would require. When Mendel's law is understood along the lines of (S), 
this phenomenon represents a genuine violation of the law (i.e., a case in 
which the antecedent but not the consequent of the law holds) and not a 
mere failure of the law to apply in the sense that its antecedent is not 
satisfied. Second, the widespread prevalence of Mendelian segregation is 
itself the result of the operation of natural selection. That is, if as appears 
to be the case, most gene pairs in sexual organisms conform to (S), this is 
because natural selection has operated in such a way as to produce this 
outcome-because segregation in accord with (S) conferred a selective ad- 
vantage of some kind. If past histories of most organisms had been suf- 
ficiently different, and if they had been subject to sufficiently different 
selective forces, nature would have contained few if any genes which seg- 
regate according to Mendelian ratios. Thus whether violations of Mendel's 
laws occur at all and whether they are common or rare is contingent on 
the course of evolution. To express this idea in the language of this paper, 
(S) fails to be invariant under many possible changes in selection pressure. 
This does not mean just that there are at present organisms and popula- 
tions in which meiosis fails to conform to (S), but rather that even for 
those types of organisms that presently conform to (S), there are possible 
changes, due to natural selection which would make it the case that those 
types of organisms or their descendants would violate (S). 

Beatty infers from these features that Mendel's law is not "necessary" 
and hence is not a real law. Beatty does not explore the implications of 
this claim for explanatory practice in biology but if we accept both the 
nomothetic thesis and Beatty's arguments, it appears to follow that the 
law of segregation (and indeed all distinctively biological theory) is unex- 
planatory. The most common strategy for avoiding this conclusion has 
been to accept the nomothetic thesis and to search for a somewhat weak- 
ened or watered down notion of law, according to which generalizations 
like (S) may qualify as laws and hence as explanatory. 

One of the central claims of this paper is that this response is unnec- 
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essary and that it simply distracts us from understanding how explanations 
that appeal to (S) work. In assessing the explanatory import of (S), what 
matters is not whether we decide to bestow on it the honorific "law," but 
rather the range of what-if-things-had-been-different questions it can be 
used to answer and the range of changes over which it is invariant. As 
long as (S) is invariant in the right way, it doesn't matter whether it has 
exceptions or is contingent on the course of evolution in the way that 
Beatty describes-it still can be used to explain. In particular, what is 
crucial to the explanatory status of (S) in the evolutionary models de- 
scribed above is that it be invariant under some range of interventions on 
the explanans variables q and w in the population P whose behavior we 
are trying to explain. Moreover, it should also be clear that this sort of 
invariance in (S) is perfectly compatible with (S) failing to be invariant 
under (other) sorts of changes, for example, under the sorts of changes in 
selective regime that Beatty describes that would disrupt normal Mendel- 
ian segregation. It is also compatible with (S) failing to hold in other 
populations. What matters for the explanatory status of (S) with respect 
to population P is not whether it has exceptions in other populations or 
whether its holding in P is contingent on conditions that could have been 
otherwise, but rather that the condition on which it is contingent (whether 
Mendelian segregation continues to provide a selective advantage in P) is 
itself changed or disturbed by some range of interventions that produce 
the kinds of changes in fitness or initial genotype frequency which we 
invoke when we appeal to (S) to explain. 

The status of (S) is in this respect is thus parallel to the status ascribed 
to (H) in the previous section. We argued there that the legitimacy of 
appealing to (H) to explain the behavior of some particular spring s is not 
undercut by the fact that there are other springs that do not conform to 
(H) or by the fact that there are circumstances in which (H) would fail to 
correctly describe the behavior of s. Similarly, even though it is true that 
whether (H) holds for some particular spring is contingent on the internal 
structure of the spring, we still can use (H) to explain why the spring exerts 
the restoring force it does as long as we are concerned with a range of 
extensions that do not alter the internal structure of the spring. For the 
same reason, even if we agree with Beatty that (S) is not a real law because 
there are evolutionary changes over which it fails to be invariant, we can 
still legitimately appeal to it to explain in models and circumstances of the 
sort described above. 

8. Invariance and Spatio-Temporal Stability. I turn now to a more detailed 
assessment of Mitchell's approach. As I remarked above, Mitchell advo- 
cates a framework in which generalizations differ along several different 
dimensions, one of which is "degree of stability". She writes 
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there is a difference between Mendel's laws and Galileo's law ... but 
it is not the difference between a claim that could not have been oth- 
erwise (a "law") and a contingent claim (a "non-law"). What is re- 
quired to represent the difference between these two laws is a frame- 
work in which to locate different degree of stability of the conditions 
on which the relation described is contingent. The conditions upon 
which the different laws rest may vary with respect to stability in either 
time or space or both. (2000, 252) 

What is the connection between these ideas about "stability" and in- 
variance? It seems to me that the notions are quite different in motivation 
and that neither is necessary nor sufficient for the other. Consider structure 
(4.1) in which Y and Z are joint effects of the common cause X. In this 
case the relationship between Y and Z is not invariant under (any) inter- 
ventions on X, hence not invariant at all. However, if the common cause 
structure itself is stable in the sense that occurs repeatedly in many or most 
regions of space and time or in the sense that a single instance of X has 
common effects in many spatio-temporal regions, then the relationship 
between Y and Z will be highly stable in Mitchell's sense. 

In fact, it is easy to think of examples having this sort of structure; 
many of them involve cosmological regularities. Consider: 

(8.1) All regions of space exhibit a cosmic background radiation of 2.7 
degrees Kelvin. 

This generalization is highly stable in Mitchell's sense. However, the ex- 
planation for why different regions of space conform to this regularity is 
that the radiation present in these different regions are effects of a single 
common cause: the conditions that prevailed in the very early universe at 
the time of the so-called big bang. If we could somehow intervene to alter 
the microwave background radiation in some particular region of space, 
this would not be a way of altering the background radiation in other 
regions. In this sense, although (8.1) is stable in Mitchell's sense, it not 
invariant under interventions. Because it fails to be invariant under (any) 
interventions, (8.1) is not a plausible candidate for a law of nature. In 
keeping with the account of explanation I defended above, it also seems 
clear that one could not legitimately appeal to (8.1) to explain why some 
particular region of space exhibits the background radiation it does. In- 
stead, the explanation for this is to be found in the conditions prevailing 
in the early universe. 

Does a similar point hold for biological generalizations? In an inter- 
esting recent paper (1998), Kenneth Waters distinguishes between two 
sorts of biological generalizations. Generalizations about distributions de- 
scribe "historically based contingencies" concerning the distribution of 
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biological entities or characteristics. Examples include generalizations 
about the prevalence of various kinds of circulatory systems across taxa 
or the generalization that major arteries in many organisms contain a 
larger amount of elastin than do other blood vessels. Waters contrasts 
such generalizations with generalizations describing causal regularities - 
an example is the generalization that blood vessels containing a large 
amount of elastin will expand when the amount of fluid in them is in- 
creased (1998, 19). Although Waters does not explicitly endorse the man- 
ipulationist account of the content of causal generalizations that I advo- 
cate, his examples fit very naturally into this framework. Changing the 
amount of fluid in a blood vessel containing elastin is a way of manipu- 
lating whether it expands or contracts and it is because this generalization 
furnishes information relevant to manipulation that it is appropriate to 
think of it as a causal or explanatory generalization. By contrast, the gen- 
eralization that elastin is present in larger amounts in arterial blood vessels 
or that it is present in the blood vessels of all or most vertebrates does not 
describe a relationship that is even potentially relevant to manipulation 
and control and hence is not a causal or explanatory generalization. 

The relevance of this to Mitchell's discussion is as follows: generaliza- 
tions describing distributions that claim that some biological characteristic 
is very widely or universally shared by all organisms may exhibit a great 
deal of stability in Mitchell's sense but this fact will not by itself show 
them to be causal or explanatory generalizations. Conversely, a general- 
ization can be causal or explanatory in the sense that it describes a rela- 
tionship that is exploitable in principle for manipulation and control even 
though this relationship holds for, or applies to, only a biological structure 
that is not shared by many organisms. For example, on my view, a gen- 
eralization describing the response of a particular sort of neural circuit to 
stimulation can qualify as causal or explanatory even if that circuit is not 
widely conserved in other organisms. 

This difference is in turn connected to another difference between my 
view and Mitchell's. As we have seen, Mitchell thinks in terms of a single 
"continuum of contingency" with (8.2) the law of the conservation of mass- 
energy at one end and a generalization like (2.1) "All the coins in Good- 
man's pocket are made of copper" at the other. This framework seems in- 
evitable if the degree of stability or contingency of a generalization just has 
to do with the stability across space and time of the conditions on which it 
is dependent. The difference in stability in this sense between (8.2) and (2.1) 
is clearly a matter of degree: assuming that there was a period of time during 
which (2.1) was true, (2.1) itself and the conditions on which it depends were 
stable over this spatio-temporal interval, however limited its duration. 
By contrast, as explained above, while generalizations can differ in degree 
of invariance, some generalizations including (2.1) as well as (8.1) are not 
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invariant at all. These differ in kind rather than in degree from invariant 
generalizations-they fall below the threshold for explanatory status. If our 
interest is in capturing the features that a generalization must possess if it 
is to figure in explanations and tell us about the results of interventions, the 
threshold/continuum model seems more appropriate. It isn't the case that 
generalizations like (2.1) and (8.1) are somewhat explanatory but less so 
than (8.2) or that they provide some information about the results of inter- 
ventions but less than (8.2) does. Rather (2.1) and (8.1) seem not to be ex- 
planatory and tell us nothing about the results of interventions. Unlike 
Mitchell's model, my account captures this. 

Not only can a generalization be stable in Mitchell's sense without be- 
ing invariant, it can also be invariant under some non-trivial range of 
interventions and changes without being particularly stable in Mitchell's 
sense. The generalization (H) is (or may be imagined to be) a case in point. 
(H) may hold only for a very specialized sort of spring; the particular 
conditions (the fact that the spring has been constructed in a very specific 
way out of a specific sort of material) on which its holding depends may 
occur only very rarely, or within a very small comer of the universe. None- 
theless, when (H) does hold for some spring, it may be relatively invariant 
in the sense that it will continue to hold under a fairly wide range of 
interventions on its extension and under many changes in background 
conditions. If so, (H) will be relatively invariant but not particularly stable. 

As a second illustration, consider two biological mechanisms involved 
in gene expression and regulation. One of these is highly conserved-it is 
found in many different species of animals that are widely distributed in 
space and time. The other is highly specific to a particular kind of animal. 
A generalization describing the behavior of the highly conserved mecha- 
nism will be more stable in Mitchell's sense than a generalization that 
describes the less conserved mechanism-it will rank higher on the con- 
tinuum of stability. Nonetheless, both generalizations may be relatively 
invariant with respect to the behavior of the mechanisms they describe. 
On my view, the mere fact that a biological mechanism is highly conserved 
does not mean that the generalization describing its behavior is more law- 
ful or invariant or that it provides a deeper or better understanding of its 
behavior than does a generalization describing a less highly conserved 
mechanism. As argued above, a parallel claim holds for Mendel's laws. 

These differences between stability in Mitchell's sense and invariance as 
I conceive it are a reflection of the fact that stability is a non-modal notion: 
whether a generalization is stable depends on whether the conditions on 
which it is contingent are in fact stable across space and time. By contrast, 
invariance is a modal or counterfactual notion. Whether a generalization 
is invariant depends not on whether conditions that would disrupt it in fact 
occur, but rather on whether the generalization would be disrupted ifvarious 
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conditions (involving interventions) were to occur. Thus (8.1) fails to be 
invariant not because conditions that disrupt it do in fact occur but rather 
because if certain changes were to occur, they would disrupt it. Mitchell's 
account threatens to treat any de facto regularity as a law, although perhaps 
one with a very modest degree of stability. 

9. Invariance and Resiliency. I turn now to some brief remarks on the 
notion of resiliency in the sense of Skyrms 1980, and Skyrms and Lambert 
1995, and its relationship to invariance. Both Mitchell and several other 
commentators?1 regard these notions as closely similar. My aim in this 
section is to defend the view that they are different in important respects. 
Abstracting away from formal details, the resiliency of a proposition has 
to do with extent to which its subjective probability remains stable or 
unchanged (or changes only by some small amount) as one conditionalizes 
on other truth functional propositions in some family, all of which are 
consistent with the original proposition and its denial. Resiliency is thus 
a measure of degree of epistemic entrenchment or "resistance to belief 
change" or centrality to our web of belief (Skyrms and Lambert 1995, 
139-141), in the sense that it indicates the extent to which an agent's degree 
of belief in a proposition would change under changes in her other beliefs. 
Laws are just generalizations that are relatively highly resilient (under 
conditionalization on some appropriate set of other beliefs): "the necessity 
of laws, like the necessity of causes, is resiliency." (1995, 145) 

While resiliency is thus an epistemic or doxastic notion which has to 
do with the relationships among an agent's (or perhaps a scientific com- 
munity's) beliefs, invariance is a non-epistemic or "objective" notion, the 
characterization of which has to do with the way the world is, rather than 
with anyone's beliefs. In particular, invariance has to do with the extent 
to which a generalization would continue to truly describe the behavior 
of some system (or the relationship described by the generalization would 
continue to hold) under changes that are actual physical changes in the 
system, rather than under changes in agent's beliefs or evidence. It follows 
that a generalization can be invariant even though no one knows that it 
is and it can be widely believed that a generalization is highly invariant 
when in fact it is not. Assigning a generalization a central role in one's 
web of belief and treating it as resilient does not make it invariant. Con- 
versely, a generalization can be invariant even though, given an agent's 
other beliefs and the available evidence, it is highly non-resilient. Consider 
some newly conjectured candidate for a fundamental law of nature for 

10. See especially Cooper (1998), who explicitly associates resiliency in Skyrms' sense 
with my notion of invariance. Skyrms has argued for a similar view in correspondence 
and conversation. 
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which there is at present only very weak evidence and which contradicts 
some apparently well-established scientific claims. Belief in this general- 
ization at least at present will be relatively non-resilient but of course this 
is compatible with the generalization being in fact highly invariant. 

While resiliency is thus relativized to a set of beliefs in a way in which 
invariance is not, this is not the only difference between the two notions, 
and resiliency is not just a subjective or doxastically relativized version of 
invariance. Presumably, the doxastically relativized counterpart to invar- 
iance is the notion of believing a generalization to be invariant, where to 
believe that a generalization is invariant is just to believe that it would 
continue to hold under some class of interventions. Like the notion of 
resiliency, believing a generalization to be invariant must be defined by 
reference to an agent's belief state. However, having a highly resilient 
belief in a generalization is not the same thing as believing it to be invar- 
iant. The reason for this is that, unlike invariance, the notion of resiliency 
assigns no special significance to stability of belief under changes in other 
beliefs that have to do with the occurrence of interventions. It is perfectly 
possible for an agent's degree of belief in some generalization to remain 
stable under changes in many of her other beliefs B but not under changes 
in her beliefs that an intervention has occurred. In this case, the agent's 
belief in the generalization is resilient with respect to the other beliefs B 
but the agent does not believe the generalization to be invariant. Con- 
versely, an agent may believe that a generalization would continue to hold 
under some class of interventions-and hence believe that it is invariant- 
but would readily give up belief in the generalization if she were to acquire 
various other beliefs or if certain kinds of evidence were to become avail- 
able. 

The significance of this point can be brought out by means of some 
examples. Consider the generalization: 

(9.1) No human beings live on other planets of the solar system. 

There is a wide variety of different kinds of evidence for (9.1) and in the 
case of most of us, it is relatively epistemically entrenched-we would 
remain committed to it under many possible changes in other beliefs. 
Nonetheless, despite its resiliency, (9.1) is no law of nature. On my view, 
(9.1) is not a plausible candidate for a law of nature because there are 
many possible interventions (e.g., establishment of a colony on Mars) 
which would render (9.1) false. Moreover, it also seems clear that to have 
a resilient belief in (9.1) is not at all tantamount to believing that (9.1) is 
invariant or is a law of nature. While most people's degree of belief in 
(9.1) is relatively resilient, few regard it as a law of nature. The question 
of whether there are interventions that would render (9.1) false seems 
largely independent of the extent to which (9.1) is resilient. A similar re- 
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mark holds for cosmological generalizations like (8.1). (8.1) is supported 
by a wide variety of evidence, is centrally located in our web of belief, and 
hence (according to Skyrms and Lambert) relatively resilient, but it does 
not follow that it is invariant or even that it is believed to be invariant. 

Consider another example. My present degree of belief in General Rel- 
ativity would change considerably if I became convinced that (9.2) most 
experts in the relevant scientific community in 2050 will regard this theory 
as false. My degree of belief in GR is not resilient under a change in my 
present beliefs to (9.2). Nonetheless this failure of resilience has nothing 
to do with the extent to which the equations of GR are invariant. Instead, 
the issue of invariance has to do with whether there are physical changes 
that might actually occur in nature which would disrupt those equations. 
The change consisting in my learning (9.2) will change my belief in GR 
but this change does not represent a physical intervention or change which 
creates a system in which the equations of GR no longer hold. Similarly, 
it does not follow from the fact that I would be prepared to give up my 
belief in GR if I were to become convinced of (9.2) (or if various other 
sorts of evidence were to become available) that I presently believe that 
the equations of GR are non-invariant or not laws of nature. 

Before leaving the topic of resiliency, there is an additional point that 
is worth making. This is that many of the examples that Skyrms uses to 
illustrate the connection between resiliency, on the one hand, and lawful- 
ness and causal necessity, on the other, can be very plausibly interpreted 
as instead illustrating the connection between invariance, lawfulness, and 
causation. For example, Skyrms (1980, 18) notes (following Max Planck 
[1922] 1960) that "all attempts to affect" the probability of decay of a 
uranium atom are unsuccessful. He connects this observation with the 
claim that generalization (P) describing this probability of decay is resilient 
and takes this in turn to capture the sense in which this generalization is 
(or is regarded by us as) lawful or necessary. However, it is at least equally 
natural to take Planck to be making a claim about the invariance of the 
generalization P: no matter what we or nature do, there are no physically 
possible changes that will affect the probability of decay. Planck's lan- 
guage and the particular illustration he offers (that changing the tempera- 
ture of the atom will not affect the probability of decay) make it clear that 
he is talking about physical changes in the world, and not (or not just) 
about the stability of an observer's belief about the probability of decay 
under changes in the information or evidence available to him. My sug- 
gestion is that it is the invariance of the probability of decay under physical 
changes that leads us to regard P as lawful or necessary. 

In my view, it was an extremely important insight on Skryms' part to 
recognize and articulate the connection between the lawfulness of a gen- 
eralization and whether it remains stable as other conditions are changed. 
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However the intuitive force of this idea is better captured by thinking of 
stability in terms of invariance rather than resiliency. Resiliency is an im- 
portant and valuable concept in its own right but its proper role is in 
capturing ideas having to do with doxastic entrenchment and stability of 
belief under additional information rather than in capturing notions like 
"law" and "physical necessity." 

10. Conclusion. My aim in this essay has been to argue that invariance 
rather than lawfulness is the key feature that a biological generalization 
must possess if it is to figure in explanations. Invariance differs from mere 
de facto stability and also from resiliency. A generalization can be invar- 
iant even if it lacks many of the features standardly assigned to laws. Once 
the role of invariance in explanation is recognized, much of the motivation 
for shoe-homing explanatory biological generalizations into the category 
of laws of nature disappears. 
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