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The Unity of Fitness

Marshall Abrams†‡

It has been argued that biological fitness cannot be defined as expected number of
offspring in all contexts. Some authors argue that fitness therefore merely satisfies a
common schema or that no unified mathematical characterization of fitness is possible.
I argue that comparative fitness must be relativized to an evolutionary effect; thus
relativized, fitness can be given a unitary mathematical characterization in terms of
probabilities of producing offspring and other effects. Such fitnesses will sometimes be
defined in terms of probabilities of effects occurring over the long term, but these
probabilities nevertheless concern effects occurring over the short term.

1. Introduction. According to the original version of the propensity in-
terpretation of fitness (PIF; Brandon 1978; Mills and Beatty 1979), bio-
logical fitness is a mathematical function of probabilities and numerical
values associated with reproductive outcomes, in particular, expected
number of offspring. This approach seems to take fitness to be a real
aspect of the process of natural selection, an aspect that is approximated
by various fitness and selection coefficient terms in models of selection,
drift, and so on. In response to work by Gillespie (1973, 1974, 1975,
1977), some authors have argued that fitness should sometimes be defined
in terms of a more complex function (Beatty and Finsen 1989; Brandon
1990; Sober 2001). Brandon (1990) argued that fitness, therefore, merely
satisfies a common schema instantiated by different mathematical func-
tions. More extreme conclusions have been drawn from arguments that
fitness must sometimes be characterized by an even wider variety of math-
ematical functions because of conspecifics’ mutual influence on repro-
ductive success (Ariew and Lewontin 2004; Krimbas 2004). Despite the

†To contact the author, please write to: Department of Philosophy, University of
Alabama at Birmingham, HB 414A, 900 13th Street South, Birmingham, AL 35294-
1260; e-mail: mabrams@uab.edu.

‡I am grateful for helpful comments and discussion from audience members at the
2008 PSA meeting and at the 2007 meeting of the International Society for History,
Philosophy, and Social Studies of Biology.
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UNITY OF FITNESS 751

heterogeneity of mathematical functions needed to model fitness, I argue
as follows.

As a causal and explanatory factor, fitness must be relativized to an
effect or explanandum to be caused/explained, but as long as the effect
is carefully specified, there is a single, often simple, mathematical property
that constitutes the fact that one type is fitter than another. In particular,
for questions about what caused one type or another to be better rep-
resented at the end of an interval of time, a type A is fitter than another
type B if and only if A has a greater probability of having proportionally
increased its frequency more than B at the end of that interval.

Although in such cases fitness must be defined in terms of probabilities
of reproductive effects over several generations, I argue that it nevertheless
has to do with influence in each generation. Since probabilities of long-
term effects can be derived from probabilities of short-term effects, the
former are simply mathematical properties of causes acting in the short
term. These short-term mathematical properties will often be difficult or
impossible to discover with any precision; that is why they must be mod-
eled by a variety of relatively simple approximations.

PIF advocates usually claim that the probabilities of which fitness is a
function are propensities, a (proposed) kind of indeterministic disposition.
One can criticize this aspect of the PIF by criticizing the concept of pro-
pensity generally or by arguing that if propensities exist, their behavior
does not allow them to play the role that the PIF requires (Abrams 2007).1

Such “function of what?” problems might be solved by arguing that some
other kind of probability plays the appropriate role. I ignore this kind of
problem here, simply assuming for now that appropriate probabilities—
whether propensities or something else—do exist.

My focus will instead be on what I call the “what function?” problem.
This is the question of what mathematical function of probabilities and
other factors defines fitness. Here, my focus is on arguments that there
is no one function common to all contexts in terms of which a central
notion of fitness should be defined. Sections 2–4 concern what-function
problems raised by Gillespie’s work (Gillespie 1973, 1974, 1975, 1977;
Beatty and Finsen 1989; Brandon 1990; Sober 2001). Section 5 addresses
what-function challenges raised by Ariew and Lewontin (2004) and Krim-
bas (2004).2

I assume that in the final analysis, the kind of fitness relevant to natural

1. Eagle (2004) surveys criticisms of propensity concepts.

2. My responses below to the what-function challenges raised by Krimbas and Ariew
and Lewontin actually involve part of an answer to a function-of-what question, es-
pecially the question of what sorts of outcomes the probabilities constitutive of fitness
concern.
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752 MARSHALL ABRAMS

selection is fitness of types, that is, properties of organisms, since it is
types that are heritable and selected for. Fitness is often attributed to
token organisms, but marginal fitnesses of various heritable types can
then be derived by averaging (e.g., Mills and Beatty 1979; Sober 1984,
2001; Ewens 2004; Rice 2004).

2. Troubles with Expectationalism. As mentioned above, the original PIF
defined fitness as the expectation or arithmetic mean of the number of
offspring:

�

Fitness of A p i Pr (O p i),� A
ip0

where says that an organism of type A has i offspring.3 However,O p iA

PIF advocates (Beatty and Finsen 1989; Brandon 1990; Sober 2001) and
others have questioned the original PIF because of Gillespie’s arguments
(1973, 1974, 1975, 1977) that a type with a lower expected number of
offspring than another can have a greater probability of long-term re-
productive success. This can happen because the number of organisms of
a given type in one generation is in part a function of the number of
organisms previously producing offspring of that type. However, the latter
number varies stochastically, producing consequent effects in the current
generation. This means that the overall shape of the probability distri-
bution over numbers of offspring, not just its mean, is relevant to long-
term evolution. In very simple cases, the most probable outcome of com-
petition between two types A and B over a large number of generations
n is that A will increase its frequency in the population if and only if its
geometric mean number of offspring is greater than B’s:

� �

Pr (O ) Pr (O )Api Bpii 1 i� �
ip0 ip0

(cf. Gillespie 1973, 194–195; Godfrey-Smith 1996, Chapter 7).
In a short discussion (Gillespie 1977) of his earlier work (Gillespie 1973,

1974, 1975), Gillespie pointed out that in some simple cases, we can
approximate a predictive measure of fitness using certain functions of
expectation and variance. Philosophers have, as a result, sometimes fo-
cused on variance as the mathematical property other than expectation
that is relevant to fitness (Brandon 1990; Sober 2001; Walsh 2007). How-

3. Note that “expect” and “expectation” have no psychological or predictive conno-
tation in themselves. Thus, one should not necessarily expect the “expected value” to
occur, e.g., for a bimodal distribution. (Consider drawing a ball from an urn with 1,000
balls labeled “1,” one labeled “2,” and 1,000 more balls labeled “3.”)
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UNITY OF FITNESS 753

TABLE 1. DISTRIBUTIONS FOR A AND B.

Type

Number Offspring
(Probability)

Arithmetic
Mean Variance Skew Kurtosis

Geometric
Mean1 2 3 4 5

A .2 .6 .2 3.0 .4 0 .4 2.930
B .05 .9 .05 3.0 .4 0 1.6 2.913

ever, Gillespie’s claims about variance concerned only certain cases, and
in any event Gillespie’s analyses often involved approximating assump-
tions—in which case no claim about what precise mathematical function
it is that counts as fitness would be implied.

Moreover, careful reading of some of Gillespie’s papers shows that even
when he proposes that fitness can be taken to be a function of expectation
and variance, complex functions of higher statistical moments would still
be needed to provide a precise definition of fitness.4 Beatty and Finsen
(1989) gave an example in which the third moment (skew) of two offspring
distributions made a difference to fitness. It is not difficult to construct
distributions over offspring numbers illustrating how higher moments
might matter. For example, the distributions for A and B in table 1 have
the same arithmetic mean, variance, and skew, but B’s fourth moment
(kurtosis) is greater than A’s, and its geometric mean is smaller. The fact
that B’s geometric mean is slightly smaller shows that in experiments over
several generations, A would usually outreproduce B.

Beatty and Finsen (1989) and Brandon (1990) considered defining fit-
ness in terms of long-term measures of success such as geometric mean
number of offspring, Cooper’s (1984) expected time to extinction (ETE),
and Thoday’s (1953) probability of persistence 108 years.5 Brandon, how-
ever, argued that fitness cannot be defined by a long-term measure because
fitness differences are supposed to reflect causes of evolution, and causes
produce their effect over (many) short-term periods: “Selection has no
foresight; it has no means to discriminate among organisms based on their
long-term probability of having surviving offspring” (1990, 25). No doubt
because mean and variance seem like respectable short-term properties,

4. The nth central moment of a random variable X has the form , wherenE[(X � EX) ]
E is expectation. Note that it is mentioned in the discussion at the bottom of page
1012 of Gillespie 1977 and it is implicit in the derivation of equation (7) on page 1013
that higher statistical moments can be relevant to relative reproductive success. Gillespie
argues that these moments typically make a small contribution to fitness. He is surely
correct in this, but that does not mean that higher moments never matter in practice,
and they certainly matter in principle.

5. Geometric mean seems like a long-term measure if viewed as multiplying numbers
of offspring in distinct generations (weighted by the probability of each kind of gen-
eration).
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754 MARSHALL ABRAMS

and because Gillespie’s summaries used them, Brandon argued that fitness
should be defined by various functions of mean and variance in different
contexts. In response, Sober (2001, 313) remarked that “long-term prob-
abilities imply foresight no more than short-term probabilities do,” but
he gave little explanation of this remark. Sober also gave examples that
suggested that both short-term and long-term fitness measures might be
useful. I agree with Sober’s points, but I think that they can be further
clarified and can be given a more systematic foundation, as I try to do
below.

3. Long-Term Short-Term Fitness. Notice that the worry that prompted
Beatty and Finsen and Brandon to revise the original expectation-based
definition of fitness was that expected number of offspring sometimes did
not correspond to probable long-term success. Long-term success is clearly
what matters in some contexts. Moreover, Gillespie’s results, on which
these authors had focused, were in fact measures of fitness in terms of
probable long-term success—approximated with simple statistical func-
tions such as expectation and variance. Also notice that an apparently
long-term measure like geometric mean in fact just captures a mathe-
matical fact about a short-term probability distribution over numbers of
offspring. Even ETE or probability of persistence 108 years can be con-
sidered a mathematical property of short-term probability distributions
over numbers of offspring: probabilities of changes in frequencies over the
long term are implied by short-term reproductive probabilities and other
short-term probabilities. Let me explain.

To fix ideas, here is a relatively concrete example. Suppose we have a
population of three As and two Bs and that reproduction is seasonal and
asexual. For each number of offspring, there is a probability of producing
that number of offspring by an A, similarly for a B. There are several
possible states of the population in the next generation, for example, six
As and four Bs, zero of A and one of B, or two of B, or three, or four,
extinction of the population, and so on. Each state can result from the
As and Bs producing numbers of offspring which add up to the numbers
of As and Bs corresponding to that state. Each state’s probability is thus
implied by probabilities of numbers of offspring. The same is true for
more complex examples.

More generally, at each generation there is a set of transition proba-
bilities , probabilities the population will go into state j one gen-Pr ( jFi)1

eration later given state i in the current generation. These one-generation
transition probabilities imply multiple-generation transition probabilities.6

6. For now, I assume that one-generation transition probabilities are the same in each
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For example, the probability of going from i to k two generations after
the current generation is the sum, over all intermediate states j, of prob-
abilities of going to j and then into k:

Pr (kFi) p Pr (kFj) Pr ( jFi).�2 1 1
j

Notice what this means: short-term probabilities of numbers of offspring
imply probabilities of frequencies many generations later (see, e.g., Bha-
rucha-Reid 1960; Grimmett and Stirzacker 1992; Ewens 2004). Since
probabilities of long-term success are implied by short-term reproductive
probabilities—the long-term probabilities are, as it were, contained in
the short-term probabilities—we can define fitness in terms of long-term
probabilities, considering them as specifying properties of short-term prob-
ability distributions. My illustration used discrete generations, but there
are continuous-time models of similar phenomena, and short-term prob-
abilities would also plausibly imply long-term probabilities in the more
complex mathematical processes actually instantiated in nature. Thus, the
problem that prompted Brandon to reject long-term measures of fitness
can be avoided. Although long-term probabilities do not initially seem
like they could be involved in causing evolution, properly understood,
they are properties of short-term probabilities.

Moreover, to the extent that fitness should reflect probabilities of long-
term success, this perspective allows a general characterization of fitness,
regardless of how context determines the relevant long-term probabilities:
fitness consists of whatever mathematical properties of short-term proba-
bilities imply probable long-term success. Thus, fitness can be defined in
terms of long-term probabilities without losing short-term efficaciousness.
In a slogan, fitness is defined globally but acts locally. That is, fitness is
defined in terms of probable long-term (“global”) effects but accomplishes
them via short-term (“local”) effects—whose probabilities have the prop-
erties that constitute fitness. We can call this “long-term/short-term” (LT/
ST) fitness.

But how long is long enough? Surely not always Thoday’s 108 years.
What if the entire population goes extinct before that time? All fitnesses
would have been zero, and thus on such an account natural selection
would not have taken place.7

generation because the environment is not changing, there is no frequency dependence,
etc. Section 5 relaxes this assumption.

7. For related reasons, ETE is not appropriate in general. The ETE of a type A is the
probability-weighted average of the number of years until there are no organisms of
type A left in the population. However, A’s ETE might be larger than B’s, simply
because there is a small chance that A will persist for trillions of years, even though
within any interval of interest to us—say, 1 million years—B is likely to last longer.

This content downloaded  on Fri, 4 Jan 2013 16:26:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


756 MARSHALL ABRAMS

4. Interval-Relative LT/ST Fitness. Natural selection is supposed to cause
(or at least explain) evolution, and fitness differences are supposed to be
an essential part of that cause. However, evolution over different intervals
of time should be seen as different evolutionary explananda, or more
precisely as different effects that might be caused by natural selection.
That is, we should recognize that in different situations, we are interested
in questions about different effects—about evolution over different in-
tervals of time. But different causes may have different effects, and dif-
ferent explananda can have different explanantia. Thus, there is no reason
to expect that fitness could be defined without reference to an interval of
time, and from the current perspective it makes no sense to do so. We
should talk of fitness relative to an interval of time I beginning from a
specified point in time t when a population is in a specified state. I use
the terms “I-fitness,” “I-fitter,” and so on for fitness understood as relativ-
ized to an interval I in this way.

In keeping with the arguments for LT/ST fitness, I suggest that fitness
be understood this way:

A type A is I-fitter than a type B if A has a greater probability of
having increased its frequency more (as a percentage of the frequency
at t) than B at the end of interval I (which begins at t).

For example, A might be likely to increase its frequency over a long period
of time I1 but then exhaust a resource it needs and thus go extinct before
the end of I2. In such a case, A might be I1-fitter than B but I2-less-fit
than B. (Note that this definition of “fitter than” is consistent with an I-
fitter type losing in a race against an I-less-fit type over the interval I;
fitness differences in the current sense summarize facts about probabilistic
outcomes and should not be taken to guarantee any particular outcome.)

5. Short-Term Probabilities of What? I argued above that we can under-
stand fitness in terms of mathematical properties of probability distri-
butions over numbers of offspring, even though those properties have
implications concerning many generations of reproduction. Ariew and
Lewontin (2004) and Krimbas (2004) gave a set of arguments that chal-
lenge even this possibility. These authors argued that different short-term
fitness measures are needed for various cases: sexual reproduction, niche
construction, overlapping generations, and so on. Among other things,
some of the Krimbas/Ariew/Lewontin arguments seem to show that in
some contexts fitness cannot be defined by a probability distribution over
offspring, or even over grand-offspring, but rather distributions over
many generations may be needed to define fitness. It thus appears that
probabilities of long-term success cannot always be reduced to probabil-
ities concerning a single generation; fitness does not always “act locally.”
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By way of response, I want to consider some of the toughest cases raised
by Krimbas and Ariew and Lewontin. I argue that taking the relevant
probabilities to be of events in organisms’ lives rather than of numbers
of descendants plausibly allows these cases to be handled by a sense of
interval-relative fitness that is defined by short-term probabilities.

Case 1: In a species with sexual reproduction, probabilities of numbers
of grand-offspring will depend on offsprings’ mates as well as parents’
number of offspring. Probabilities over numbers of offspring thus do not
imply long-term probabilities; probabilities over number of grand-off-
spring seem needed. (This is so whether or not mating is random.) How-
ever, probabilities of an offspring mating with organisms of various types
depend on each parent’s (short-term) probabilities of producing numbers
of organisms of various types, along with the distribution of parent types
in the population. For it is these factors that determine probabilities of
different frequencies of types in the generation in which offspring mate.
Moreover, where mating is nonrandom, mating preferences determine
(short-term) probabilities of mating with various types. Thus, probabilities
of numbers of grand-offspring are implied by short-term probabilities,
although over a richer space of outcomes (e.g., offspring types must be
distinguished) than considered earlier. Arguments like those given in Sec-
tion 3 can then show that these short-term probabilities imply long-term
probabilities. Mathematical properties of the short-term probabilities are
defined by these long-term probabilities and thus can constitute LT/ST
interval-relative fitness in terms of these properties. (Other cases such as
frequency dependence due to epistatic interactions between loci can be
handled in a similar manner.)

Case 2: Traits affecting parental investment, parent-provided devel-
opmental context, and niche construction can indirectly affect probabil-
ities of numbers of grand-offspring or later descendants without affecting
probabilities of numbers of offspring. Such cases thus seem to require
that the shortest-term probabilities are those over numbers of grand-
offspring or later descendants—potentially dozens of generations later.
However, a parent’s type plausibly gives rise to a probability distribution
over many possible events in its life (given the makeup of its population
and its environment). These probabilities include inter alia probabilities
of numbers of offspring of various types, in various locations, and so on,
as well as probabilities of offspring-aid events, niche construction activ-
ities, and so on. This variety of short-term probability (over a rich outcome
space) thus implies probabilities of numbers of offspring in future gen-
erations via effects produced by a current organism. Again it can be argued
that properties of such short-term distributions imply probabilities of
long-term success and can thus constitute LT/ST fitness relative to a given
interval.
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758 MARSHALL ABRAMS

Case 3: Ariew and Lewontin (2004) point out that when generations
overlap, probabilities of long-term success can depend on whether the
population size is increasing or decreasing. Thus, it seems that fitness
cannot be defined except by reference to what the population size is ac-
tually doing. Moreover, given that population changes are probabilistic,
the way in which a population’s size changes might not be determined
by facts at a given time. Ariew and Lewontin seem to suggest that in such
cases fitness cannot be defined by short-term probabilities but instead
must be derived from actual events over a relatively long period. But this
is incorrect. Probabilities of size change are implied by probabilities of
events in organisms’ lives such as those considered so far. The simple five-
organism example I gave in Section 3 illustrates this idea. Each next-
generation population state had a probability derived from probabilities
of numbers of offspring for the types A and B. These population states,
however, did not all involve the same population size. The probability of
a particular increase in population size would then be the sum of prob-
abilities of certain states with sizes larger than the current one; proba-
bilities of decreases would be determined similarly. For the Ariew/Le-
wontin example, note that mathematics of transition probabilities for
overlapping generations are well known. Again it appears that probabil-
ities of various multigeneration evolutionary paths of the populations
would be determined by strictly short-term probabilities, so LT/ST fit-
nesses would again exist.

It thus seems plausible that interval-relative LT/ST fitness can be defined
in terms of probable outcomes at the end of an interval I, where the long-
term probabilities are implied by short-term probabilities of events in or-
ganisms’ lives. The short-term transition probability distributions at various
times need not be the same, but probabilities that various later short-term
distributions come into play will be implied by earlier short-term distri-
butions along with initial conditions at the beginning of I. Long-term prob-
abilities will then be implied by the various short-term probabilities and
short-term-derived probabilities that various short-term distributions will
be invoked.8 (None of this need be true when environmental change is
caused by factors beyond the environment in question, but that is no
strike against the current view since it is generally agreed that fitness
should be sensitive to such environmental changes.)

8. Similarly, the (long-term) probability that a team will win a tournament might
depend on probabilities that it will win certain meets and thus face various opponents,
in turn determining probabilities of winning subsequent meets, and so on.
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6. Conclusion.

6.1. Comparative Fitness. The view that results from the preceding re-
marks can be summarized as follows:

• A type A is I-fitter than B if A has a greater probability of having
increased its frequency more than B at the end of the interval I,
where the relevant long-term probabilities are implied by short-term
one-generation probabilities over certain events in organisms’ lives.

• The relevant interval for I-fitness is the interval over which a chosen
evolutionary effect takes place.

• That fitness is constituted by short-term probabilities means that it
concerns events that act over the short term.

• Fitness is measurable in principle but estimated in practice. Models
and sampling techniques for aspects of the preceding notion of fitness
exist.

This provides a unified characterization of what it is for one type to be
fitter than another. For a given population, there is, of course, a different
fitness property for each interval I, but it should be clear now that this
is what we should expect for different evolutionary effects/explananda.
The current view differs from the earlier views discussed above (Brandon
1990; Sober 2001; Ariew and Lewontin 2004; Krimbas 2004), which al-
lowed fitness properties to be disparate and without systematic relation
to one another. Note that if the relevant short-term probabilities are causal
(as they would be if they were propensities, for example), the current
approach can help support a view of natural selection as a single kind of
cause of evolution.

I want to suggest some possible further developments of this view. First,
notice that what makes the overlapping-generations case different from
those considered earlier is that it requires a probability distribution over
times at which a parent produces offspring. More generally, sequencing
and timing of events in relation to changes of states of the environment
can matter to probabilities of future proliferation. This suggests that the
basic short-term probabilities that constitute fitness should be probabilities
of “organism-environment histories,” sequences of possible events (both
organismic and environmental) in the life of an organism of a given type
(Abrams 2009a). Second, I suggest that an environment should be viewed
as defining a probability distribution over conditions that members of a
given population might experience during the interval of time I over which
fitness is to be calculated (Abrams 2009b). This is to treat an environment
as the environment for an entire population, rather than for a specific
organism or subpopulation.
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6.2. Population Dynamics. The definition of “fitter than” given above
does not resolve all what-function questions about fitness. Although the
definition can be used to define a sense of comparative fitness over very
short intervals I, understanding short-term dynamics usually calls for a
fitness degree property. Measures of relative strength of fitnesses are also
relevant to some questions about long-term evolution; we may, for ex-
ample, want to know not only which type will probably go to fixation
but also how fast it is likely to do so.

In such cases the condition to be caused, explained, or predicted is more
precise than the question of which type will probably increase its frequency
more, and so on, and the relevant notion of fitness should reflect that
fact. We should not expect, however, that there is one scalar fitness prop-
erty that can be taken to be the property that objectively drives all short-
term dynamics. For what really drives short-term dynamics is the set of
full moment-to-moment transition probability distributions for members
of a population, rather than sequences of summary statistics such as
expectations. The full set of transition probability distributions implies a
probability distribution over all possible sequences of frequency and pop-
ulation size changes over an interval of time. Then, we have to decide
what kind of summary property of the latter distribution is of interest to
us. Scalar time-indexed fitness properties can be relevant to prediction/
explanation/causation of dynamics but only relative to a precise specifi-
cation of what is to be predicted/explained/and so on. Thus, for example,
the common use of expected number of offspring to model short-term
dynamics is in fact ideal for answering one particular question: What is
the path of the average population state conditional on the previous state
through the space of possible relative frequencies of types? However, that
is only one of many simple questions one might ask about population
dynamics.

These last remarks might make one conclude that the notion of fitness
is far less unified than is suggested by the rest of the article. Such a
conclusion seems premature. For my remarks suggest only that, as in the
rest of the article, a causal and explanatory property going by the name
of “fitness” must be relative to the effect to be caused or explained. I
have explained how to provide a systematic characterization of compar-
ative fitness relativized to intervals of time. There is at present no reason
to think that the tools developed for that purpose cannot be used as the
basis of a systematic characterization of fitness for a broader range of
evolutionary effects.
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