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In this paper I address the question of whether the probabilities that appear in models of stochastic gene
expression are objective or subjective. I argue thatwhile our bestmodels of the phenomena in question are
stochastic models, this fact should not lead us to automatically assume that the processes are inherently
stochastic. After distinguishing betweenmodels and reality, I give a brief introduction to the philosophical
problem of the interpretation of probability statements. I argue that the objective vs. subjective distinction
is a false dichotomy and is an unhelpful distinction in this case. Instead, the probabilities in our models of
gene expression exhibit standard features of both objectivity and subjectivity.
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1. Introduction

Over the past few decades, advances in experimental techniques
have led to surprising discoveries about numerous cellular
processes. For example, genetically identical clones of Escherichia
coli put in the same medium in the same conditions will exhibit
differing patterns of phenotypic expression. This could be due to
a number of factors, perhaps most obviously, fluctuating concen-
trations of molecules such as regulatory proteins that can vary from
cell to cell. But even holding fixed the concentration patterns of
various intracellular components still leads to non-identical
outcomes (Elowitz et al., 2002). Similar studies show variability
with respect to cell division, cell differentiation, cell death, and
essentially every other cellular process that has been studied in
detail. For simplicity, I will talk about all of these processes are
being included under the broad heading of “stochastic gene
expression”. For recent reviews of the experimental literature, cf.
Eldar and Elowitz, 2010; Huang, 2010; McCullagh et al., 2009;
Niepel et al., 2009; Singh and Weinberger, 2009.

How should we interpret these results? According to Gandrillon
et al. (introduction, this volume), it has been “demonstrated that
gene expression is a stochastic process” and Kupiec (2010) says, “It
is now widely recognized that gene expression and cellular
processes include a probabilistic component”. Many authors agree
and often provide similar sorts of explanations for the fundamental
reasons behind these results: “Many cellular processes are subject
to substantial stochastic variation, because they depend on inter-
actions among a small number of molecules” (Wang and Zhang,
2011), “Gene expression is an inherently stochastic process:
All rights reserved.
Genes are activated and inactivated by random association and
dissociation events, transcription is typically rare, and many
proteins are present in low numbers per cell” (Paulsson, 2005), and
“All cellular events directly or indirectly depend on probabilistic
collisions between molecules” (Paulsson, 2005).

1.1. Models and reality

But is it really true that gene expression is an inherently
stochastic process? How do we know this? To answer these ques-
tions, first, we have to ask what it would mean for gene expression
to be an inherently stochastic process. To begin, let’s distinguish
betweenmodels and reality. A model represents the world as being
a certain way. We use models to make predictions and to explain
phenomena. A model is something we use. Reality is the way the
world really is. There are good models that are useful to us since
they help us to make accurate predictions or we think they
represent some important truths about the world and then there
are bad models that fail in some important respects. We think
Ptolemy’s model of the solar system is a bad model for all sorts of
reasons e the primary reason being that we think it fundamentally
misrepresents the sun and all the planets as traveling around the
Earth when, in fact, the Earth and the other planets travel around
the sun. But Ptolemy’s model is a model nevertheless. In fact,
Ptolemy’s model is quite good at making certain kinds of predic-
tions e at least as good as Copernicus’s heliocentric model in this
respect (I refer to the actual model of Copernicus ewe could do far
better by Kepler’s time). What makes for a good model is an
extremely difficult question, but it is clear, for example, that despite
the example of Ptolemy, models need not represent everything in
perfect detail and it can even represent the world falsely. For
example, good models can contain idealizations of point-mass
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particles, infinitely deep water, or frictionless planes; these
misrepresentations of reality do not guarantee that they are bad
models.

It is usually fairly straightforward to say whether a model is
stochastic. “Stochastic” is synonymous with “probabilistic” where
some of the probabilities are non-trivial (between 0 and 1). What
we do know is that molecular biologists regularly use stochastic
models to predict and explain various biological phenomena. What
happens in a cell depends, in part, upon the location of various
molecules inside it. The births and deaths of molecules can be
modeled probabilistically leading to “random” fluctuations in
concentrations. A Langevin equation, which is a stochastic differ-
ential equation, is used to model their movements through the
fluids in a cell. Poisson processes are used to model the length of
time required for transcription and translation (Paulsson, 2005).
We could go on, but there is no need. Stochastic models are
everywhere in molecular biology.

Wewant to understand what these stochastic models are telling
us about the world. It seems that in order to know this, we need to
know what probabilistic statements mean. This is the goal of
providing an “interpretation of probability” which is an answer to
the question of what probability statements mean e what makes
them true, if they are true. A natural question to ask is whether
these probabilities should be understood as “objective” or
“subjective”. Roughly speaking, this is asking for whether the
probabilities represent real facts about the world or the system in
question or merely represent facts about our minds or our beliefs.
Perhaps we only use probabilities because we are ignorant of some
important variables and we want to estimate the results without
being too far off. Then we might ascribe subjective probabilities
representing how sure we are of the outcome. On the other hand,
perhaps the movements of molecules in the cell are irreducibly or
fundamentally chancy and indeterministic in the way that we
might think that the radioactive decay of an isotope is indeter-
ministic. Then it seems the probabilities would be objective
features of the world. But these are not the only two possibilities.

While this is a natural question to ask, I will argue that the
words “objective” and “subjective” are so loaded with semantic
implications about what would follow from each that it turns out
that the probabilities in question are not usefully described in
either way. In this paper, I will not be offering any definitions of
what it would take for a probability to be objective. I do think that
the distinction can be helpful to make in some contexts since there
are fairly clear cases of each. However, as a general classification
tool for sorting probabilistic claims, it is rather unhelpful and even
downright harmful and I will argue that gene expression is
precisely the kind of example that shows this to be true.

2. Determinism and indeterminism

We began with quotations that suggest that the process of gene
expression itself is stochastic. This is a kind of “ontological” as
opposed to “epistemic” understanding of stochasticity and so the
probabilities in question would surely be classified as objective.
Here it seems that the implication is that the world is genuinely
indeterministic. Clarifying the concept of determinism is an
important and difficult philosophical project. Some things are clear
e for example, that we should not equate determinism with
predictability (Suppes, 1993; Franceschelli this volume). But other
aspects are not so clear. For example, despite appearances to the
contrary, it is not clear that classical physics is deterministic, nor
that modern quantum theories are indeterministic. There are
difficult conceptual and technical issues involved (cp. Earman,
1986; Butterfield, 2005; Hoefer, 2010). But I think the concept of
determinism is clear enough for our purposes. The world is
deterministic if the exact state of the world at a time guarantees
what will happen in the future. It is indeterministic if the exact
state of the world is consistent with multiple, possible futures.
Gene expression would thus be indeterministic if the question of
whether a gene will be expressed in a given cell in a given time
frame is not determined even by the exact state of all of the cellular
and environmental components at a given time.

What arguments could be given that gene expression is genu-
inely indeterministic? One possibility is starting from an indeter-
ministic process and showing step by step how this leads to gene
expression being indeterministic. For example, if we knew that
quantum mechanics was indeterministic and we knew how inde-
terministic quantum processes were responsible for individual
gene expression events, and we could calculate the probabilities of
these events, thenwe could show that gene expression is genuinely
indeterministic. But obviously, no such science exists. We do not
have a detailed understanding of how quantum mechanics and
molecular biology are connected. If we accept a certain kind of
determination of the biological by the physical, then in theory,
quantum probabilities could bubble up. But there is no reason to
think that the probabilities that result will be anything other than
numbers extremely close to 0 or 1 for any particular event. While
this would mean that gene expression was indeterministic, the
models in question often predict probability values such as .5 and
so these values could not be explained in this way.

It is worth pointing out here that there is a philosophical liter-
ature on the question of whether evolutionary processes are
genuinely indeterministic and more generally, the question of how
to interpret the probabilities found in evolutionary theory, such as
in models of genetic drift. Many of the arguments and positions in
that literature will parallel obvious positions about gene expres-
sion. For example, Rosenberg (1994) argues the biological world is
deterministic (or so close that it doesn’t matter) and the probabil-
ities are subjective, while Brandon and Carson (1996) and Sansom
(2003) argue that they are objective and represent genuine inde-
terminacy. However, Millstein (2003), Sober (2011), and Werndl
(2012) convincingly argue that we simply don’t know if evolu-
tionary processes are indeterministic and so the probabilities that
appear in evolutionary theory must be consistent with either an
underlying determinism or indeterminism.

In fact, our simple distinction between models and reality can
help to make clear why we should not expect a good argument for
indeterminism from these theories. I mentioned that molecular
motions are often modeled with a Langevin equation. This model is
based on the idea of the Brownian motion of particles. Strictly
speaking, Brownian motion assumes that the particles move about
and collide randomly with other particles. But we do not think that
the particles actually move randomly. Instead, we think that they
are governed by the dynamical laws of mechanics which them-
selves are in almost every circumstance, modeled quite well by
Newton’s laws of motion. In fact, we have a theory of why
a stochastic model could work so well under the assumption of an
underlying deterministic Newtonian dynamics. As the number of
collisions of particles increases, various averages become better and
better approximations to the actual movements. In the limit, the
averages are perfectly modeled by random collisions and so when
the actual number of collisions is very high but finite, say on the
order of 1021 collisions per second, thenwe should think that while
the movement of a particle as determined by collisions is actually
deterministic, it is very closely approximated by a stochastic model
which treats various kinds of collisions as “averaging out”. Sober
(2011) uses a coin tossing model of Diaconis (1998) based on
workwith Keller (1986) to argue that while initial conditions might
deterministically lead to a particular coin toss outcome, they can
“average out” in the right way such that it could be objectively
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correct to say that the probability of this coin landing heads ¼ .5.
This is similar to how statistical mechanics uses an underlying
deterministic dynamics to make probabilistic predictions about the
increase of entropy in a system (Le Bellac this volume).

The worry goes deeper. There are debates about whether
quantum mechanics is itself indeterministic. Given that various
quantum theories really are meant to ultimately govern all kinds of
interactions, such as those that operate within the cell, if quantum
processes are fundamentally deterministic, then biological
processes must therefore also be deterministic. But are quantum
processes deterministic? We don’t know. There are indeterministic
interpretations such as the Copenhagen interpretation and there
are deterministic interpretations such as Bohmian mechanics. Both
agree on the relevant macro-facts that lead to cellular interactions.
If the mere fact that stochastic models are used in biology meant
that biological processes were indeterministic, we could settle the
debate about quantummechanics. But it is pretty clear that looking
at molecular biology is not the way to settle this particular debate.

Worse, there appear to be theorems that directly show that we
couldn’t possibly have observational evidence for indeterminism
(or determinism). Bertin (this volume) shows the difficulties in
separating the two concepts in practice and Suppes (1993) and
Werndl (2009) argue that Ornstein’s theorem (Ornstein, 1974)
effectively shows that the choice between deterministic and inde-
terministic models is necessarily underdetermined by any currently
possible empirical observations. Wüthrich (2011) disagrees with
the general result for the case of quantum mechanics, but for
reasons that will not apply in the molecular biology case.

Whether the world is fundamentally deterministic is a difficult
question. But it is not answered by pointing out that we have good
models in molecular biology that have stochastic elements. And
even if molecular processes are fundamentally indeterministic,
there is no reason to think that the probabilities that are generated
in a model of gene expression represents these fundamental
chances. If we did know the exact internal state of the cell, perhaps
it would still be indeterminate if and when a gene product will be
produced. But it is doubtful that the probabilities would remain
unchanged from the models we currently have. Rather, they would
all be very close to 0 or 1. The probabilities that arise from our
models do not represent fundamental, irreducible chances. We
must look elsewhere for their interpretation.

3. Interpreting probabilities

There are a number of “standard” interpretations of probability
in the literature that have been proposed as the ultimate meaning
of probability statements. For a good, brief survey, see Hájek (2011).
If we knew what probability statements meant in general, we
would know what they mean in this specific case. It is not clear
what counts as a good interpretation, but as a first pass, it looks like
there are at least two desiderata e first, the interpretation must
make the axioms of the mathematical theory of probability true. If
your interpretation says it is possible for the probability of an event
to be 6.2 then it is a bad interpretation. A more complicated
desideratum is that the interpretation should explain how and why
frequencies seem to be related to probabilities and how probabil-
ities can be a good guide to evidence and decision making.

Perhaps the oldest interpretation is called the “classical” inter-
pretation such as described by (1814). Here, the probability of an
event is simply the fraction of the total number of possibilities in
which the event occurs. For example, the probability of rolling an
even number on a six-sided die is 3/6. Obvious problems imme-
diately arise such as when there is not a unique way to divide up all
of the possibilities. What is the probability that Bob is in France
given that he is in Europe? We could count each country as
a possible location or each geographical region of equal area as
equally likely, or we could find the total fraction of people in France
relative to Europe and treat Bob as a random individual. Each of the
three methods will almost certainly lead to a different answer.
Another difficulty arises when considering the possibility of
fundamental bias. For example, it looks like a coin has two possible
outcomes e heads or tails. But how can we make sense of a biased
coin that has a probability of heads of .75? There is no easy way
according to this interpretation.

In the 19th century, various versions of frequency interpreta-
tions of probability first appeared. The actual frequencies of the
outcomes of various trials satisfy the axioms and it is plausible that
when we say the probability of a man in the United States having
a heart attack between the ages of 60 and 65 is 1/2, that we do in
fact simply refer to the actual frequency of heart attacks in this
group. Various versions of frequency theories have been defended
such as Venn (1876) who allowed only finite frequencies as well as
those who consider hypothetical infinite sequences of trials such as
von Mises (1957). Both versions of frequentism have well-known
problems (Hájek, 2011). A coin tossed only 3 times and then
destroyed might have a probability of heads of 1/3, which seems
wrong. If we instead ask what the relative frequency would
converge to in the limit as we toss the coin infinitely many times, it
is unclear why there should be some specific fact about exactly
what would happen in that case. Saying what would “probably”
happen doesn’t help.

Various versions of propensity views exist where probability
represents some kind of physical propensity or disposition for
a given set up to produce certain results. Karl Popper famously
thought that single-case propensities fit the probabilities in
quantum mechanics quite well while Gilles (2000) and others
develop views that allow long-run propensities that do not apply to
single cases and so, for example, a coin tossing setup may have the
physical disposition to lead to a coin coming heads roughly half of
the time in a thousand tosses without actually having any partic-
ular propensity for an individual toss.

Subjective views of probability have a long history, but it took
until the 20th century for their most rigorous formulations. Here,
probabilities represent the degrees of belief of some agent. You can
get a grip on degrees of belief by asking, for example, howmuch an
agent would bewilling to bet on the truth of some propositionwith
stakes of say, $1 if they win the bet. If they would be willing to bet
$.50, then it seems that their degree of belief in that proposition is
.5. Ramsey (1926), de Finetti (1937), and Savage (1954) are
considered among the modern founders of this view.

Each interpretation has its followers and arguments on its
behalf. But of course each also has its problems. I myself think it is
quite clear that none of these could possibly ground all of our uses
of probabilities. As we will see in the next section, a number of
authors agree and develop a pluralistic view in which different
interpretations apply in different circumstances. A common view
seems to be that there are two (or at least two kinds of) correct
interpretations e an objective one and a subjective one.

3.1. Classifying interpretations

The project of interpreting probability has a long history. Ian
Hacking’s The Emergence of Probability (Hacking, 1975) is a philo-
sophical history of the origins of probability theory from roughly
1660 until Hume’s Treatise in 1738. Hacking forcefully argues that
both objective and subjective uses of probability have been with us
since the beginning. As he puts it, probability is “Janus-faced”,
named for the two-faced god of the Romans (Hacking, 1975: 12).

A number of philosophers have argued that there are at least
two different interpretations or kinds of interpretations of
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probability that are correct in different cases. Famously, Rudolf
Carnap believed there were two useful measures, which he called
probability1 and probability2 (Carnap, 1945). Probability1 is the
“degree of confirmation” in the sense that, P1(XjK) is roughly
speaking, the logical probability of X given background knowledge
K. Probability2 is a measure of long-term frequencies.

Ian Hacking (2001) says that Carnap has things roughly right,
but he calls his interpretations “frequency-based” and “belief-
based”. Carnap defines his probability measures rather precisely
and Hacking purposely does not so it is far from clear that he really
has the same thing in mind. I think the best way to read Hacking is
that he does not believe that there are just two useful interpreta-
tions. Rather, he thinks that there can be a variety of slightly
different things that we might mean but that they can basically be
categorized into two categories. Hacking argues against “dogma-
tism”which says there must be exactly one of these interpretations
that is correct in all cases or even all cases in science.

David Lewis (1980) thinks that Carnap was right that there are
two kinds of probability, but he disagrees about what they are. He
calls the two interpretations “chance” and “credence” where
“chance” refers to objective, single-case probabilities made true by
non-mental features of the world. Single-case quantum probabili-
ties are the ideal case for objective chances, but Lewis assumes that
these quantum chances can “bubble up” to larger, macroscale
phenomena. But they are not the same as the actual frequency of
some type of event nor are they simply defined by something like
a long-run frequency. Exactly how Lewis can get these chances
within his philosophical system is a long and difficult story, but it
suffices to say that these chances, if they exist, are objective in the
relevant sense. On the other hand, Lewis also defines “credence” as
a probability measure. These are the subjective probabilities of
Ramsey and de Finetti, which Lewis says measures reasonable
degrees of belief.

Donald Gilles (2000) takes at least four different kinds of
interpretations seriously, but he classifies them into two groups e
objective and epistemic. Frequency and propensity accounts are
classified as “objective” while the classical and subjective accounts
are classified as “epistemic”. Gilles classifies the logical account of
probability as a version of classical probability and thus it counts as
epistemic.

Once we allow for a pluralistic view of probability, it is easy to
slip into thinking that objective probability refers only to the
fundamental, irreducible chances posited by theories like quantum
mechanics. But this is a mistake. Frequency views already show us
a way to have mind-independent probabilities “in the world” that
are consistent with determinism, but this is certainly not the only
way. Other accounts can be found in the literature that aremeant to
apply in special circumstances such as “deterministic probabilities”
(Strevens, 2003), “counterfactual probabilities” (Lyon, 2011),
“deterministic chances” (Glynn, 2010), and “mechanistic probabil-
ities” (Abrams, forthcoming). Elliott Sober has argued (Sober, 2000,
2010) that we might simply treat probabilities as fundamental
postulates in a theory thus rendering them objective. We can call
this the “no-theory theory” of probability. Each of these interpre-
tations tries to capture the possibility of objective, macro-level
probabilities that are consistent with an underlying deterministic
dynamics.

3.2. Objective and subjective probability

There are numerous ways of trying to spell out the meaning of
“objective” and “subjective” but a rough characterization might be
that objective probabilities are meant to be “in the world” while
subjective ones aremeant to be “in our heads” or at least dependent
on features of our knowledge or beliefs. This doesn’t seem to be
a strawman characterization as both sides seem to accept this kind
of division while arguing that one side of the division makes no
sense or can’t be useful at least for certain, special cases, for
example, in scientific applications.

While something like the objective vs. subjective distinction
seems to be very common, it is not that helpful in understanding
many kinds of probabilities. This is because the natural way of
reading the distinction does not provide a neat classification for
existing views. Individual interpretations often have a flavor of both
(and sometimes try to avoid key features of each) such that clas-
sifying the interpretation doesn’t really tell us much and in fact, can
be misleading. There are at least two primary reasons for this
problem: 1) Subjective probabilities cannot merely represent
purely psychological states of agents. These states could not hope to
follow the axioms. For example, since no one is logically omni-
scient, no one is clever enough to have a degree of belief 1 to all of
the statements that are logical truths. Real agents like us aren’t that
smart. Instead of representing purely psychological states, subjec-
tivists think of probability as some kind of measure of “reasonable
belief” or idealized belief. Yes, your degrees of belief are functions of
what you yourself belief, but also functions of the way the world is.
Arguments that degrees of belief must follow the axioms show
what rational agents should do e not what real agents actually do
(Hájek, 2011). Some subjective probabilities thus have a flavor of
objectivity to them. It is a mind-independent fact that A and B are
exclusive if they are and subjective probabilities must respect this.
Thus rational credences satisfy some of the features of objective
probabilities.

Second, it seems that we want to locate some probabilities such
as the probability of a coin toss coming up heads or a gas diffusing
into a larger volume box or a gene being expressed in a given
location in a given time interval as being “in the world”. These
should be objective probabilities. Surely the probabilities of
statistical mechanics, such as the fact that the probability of an ice
cube melting in warmwater is very high, are not dependent on our
psychological states. So these probabilities are objective. But at
least in some of these cases, we have deterministic models for how
these work. Given the exact initial conditions, only one outcome is
possible. Thus it seems that if there are probabilities in these cases,
they must be subjective at least in the sense that they are based on
incomplete information about the phenomena. Yes, we can use
probabilities to predict the outcome in a particular case. But if we
knew more, we could make better predictions. Thus the probabil-
ities seem subjective or at least have a subjective flavor to them.

In fact, statistical mechanics is a very good model for how to
think about gene expression. Paulsson (2005) implies that the
stochasticity of gene expression derives from the collisions of
molecules inside the cell. While we do not have proof that this is
the case, it is a reasonable hypothesis. But even if this is true, it
would not immediately answer our question about the interpre-
tation of probabilities in gene expression since after all, there is
a long history of debate about the interpretation of probabilities in
statistical mechanics. For example, in just one recent volume on
probabilities in physics (Beisbart and Hartmann, 2011), Uffink
(2011) argues that we should understand these statistical
mechanical probabilities as subjective, while Lavis (2011), Callender
(2011), and Maudlin (2011) all disagree. However, each of these
three authors defends a very different account for the source and
interpretation of these objective probabilities. Even if we accept the
link between gene expression and statistical mechanics, we are still
left with many fundamental questions unanswered.

Probabilities that seem to represent objective features in the
world are consistent with underlying deterministic dynamics,
which apparently leaves no room for objective chance. Subjective
degrees of belief must be reasonable degrees of belief, which are



J.D. Velasco / Progress in Biophysics and Molecular Biology 110 (2012) 5e10 9
guided by objective features of the world such as physical
symmetries. Therefore with even the briefest of careful inspections,
the objective/subjective distinction seems to break down.

3.2.1. Classical and logical interpretations
To see a specific example of how the distinction can quickly

break down, let’s examine the classical theory of probability as
expounded by Laplace and others. Laplace is clear that what makes
two cases “equally possible” is our evidence with respect to these
possibilities. As he says, probability “is relative, in part to our
ignorance, and in part to our knowledge” (Laplace, 1814, p. 6). This
is clearly an epistemic view. To get probabilities, Laplace endorses
a “Principle of Indifference”which says that if you have no evidence
favoring one possibility over another, they should have the same
probability. Clearly different people can have different evidence
and so assign different probabilities to the same phenomena. But
Laplace did not intend his view to be subjectivist in the personalist
sense of Ramsey or de Finetti who think that agents with exactly
the same evidence might nevertheless have different degrees of
belief. Laplace aims to be capturing an objective fact about our
uncertainty of the situation. These objective facts are typically
characterized by symmetries in the system in question. The
symmetry of the two sides of a well-balanced coin or the sides of
a fair die is a property of the objects in question and thus if physical
symmetries guide our probabilities, then it seems that they are
objective.

Descendants of the classical view include the logical views of
Keynes, Jeffreys, and Carnap. In fact it was Keynes who clearly
articulated and named the “the Principle of Indifference” (Keynes,
1921). Keynes considered probabilities to be degrees of partial
entailment. Here, the relevant symmetries that determine proba-
bilities are logical symmetries that arise from our language. While
Carnap calls his logical probabilities “degrees of confirmation” and
uses them tomodel evidence, they are meant to represent objective
facts about just how much evidence one proposition provides for
another. Jeffreys (1939) started a program which today is called
“Objective Bayesianism” in which probabilities fundamentally
represent degrees of belief and uncertainty as in all Bayesian views,
but in his view, prior probabilities should be common to all and
thus he was opposed to “Subjective Bayesianism”. The obvious
problems with classifying well-developed views such as Objective
Bayesian views as either objective or subjective shows the inherent
problemswith such categories. I agree that some uses of probability
have this “logical” flavor. But with our pluralist view of probability
in mind, it still might be that the probabilities in molecular biology
do clearly fall in one category or the other.

4. Final discussion

The categories of objective and subjective to classify probability
statements have always been with us even if the words haven’t.
Incidentally, the meaning of these words has definitely changed
through time in philosophy. Nadler (2006) points out that they
have nearly the opposite meanings in Descartes (1984) 0 Meditations
as they do today. Zabell (2011) attributes the change in usage to the
popularity of Kant’s usage.

From the very beginnings of the development of probability
theory, probability has played both roles. There have been indi-
viduals such as Richard vonMises or Karl Popper who have insisted
that subjective probabilities are meaningless. Others, such as Bruno
de Finetti, insist that all probabilities are subjective. But a more
nuanced view is called for. What we can say is that it would be
a mistake to think that just because our model is stochastic, the
probabilities must therefore represent irreducibly objective chan-
ces. There is no reason to think that our models represent all of the
relevant variables in the sense that even if we included more
information about the exact state of the various molecules involved
this would not change the probabilities of the various outcomes.
This could very well be a case where a stochastic model can do
a very good job of representing a deterministic process. In fact,
given that we do not want a biological model to represent every-
thing about the world (such as the precise temperatures of each
molecule or the effects of gravity due to an orbiting asteroid), it may
well be that the best possible model is in fact a stochastic one.

A natural response upon seeing this conclusion is that we should
infer that the probabilities in question are therefore subjective; that
our model is only stochastic because we are ignorant. I think this is
also a mistake. It may well be true that an omniscient Laplacian
being with unlimited computational powers would have no need
for a stochastic model of gene expression. Perhaps the being would
use models of molecular interactions more directly. Perhaps it
would even use quantum mechanical models and have no need for
simpler “higher level” models. But this does not mean that the
probabilities are subjective.

Subjective probabilities are standardly interpreted as degrees of
belief. Degrees of belief are often interpreted as something like
betting quotients. It is, at best, unclear how these could play a role
in science. How could the scientific explanation of phenotypic
heterogeneity in an organism cite our degrees of belief about its
internal states? Our models of gene expression do not vary
between different cognitive agents. If one scientist is more willing
to bet on a certain pattern of cellular differentiation than another,
this does not change the model that the scientific community
thinks is best. But these are natural implications of the subjective
view of probability.

My inclination if I were forced to choose is that “objective” is
a much better term than “subjective” to describe these molecular
probabilities. They represent facts about the world and not about
our beliefs. They do not vary between agents. They are robust under
various kinds of perturbations of the parameters. Given the history
of the objective vs. subjective debates and what I think the proper
uses of these terms are, “objective” seems to me the better choice.
Even if we are not being forced to choose andwe have say, “neither”
or “both” as options, it still may be that “objective” is appropriate.
However, we should not simply stop there. It can be extremely
misleading to say that these probabilities are objective without
further, detailed discussion of what this means.

Various “objective” interpretations of probability have been
developed: actual frequency views, hypothetical relative frequency
in the limit views, propensity views of various kinds, and plausibly,
the classical, logical, or Objective Bayesian views can also be called
objective interpretations. All have severe problems as general views
of probability and I think that none of these interpretations as
described by their defenders does a very good job of capturingwhat
the probabilities mean in themodels of gene expression that we are
considering.

Themost natural interpretation of “objective” is that the process
involved is genuinely indeterministic. Fundamental, irreducible,
stochastic dynamical laws would get us objective probabilities. But
we cannot draw this conclusion in our case. While a number of
philosophers as well as physicists, statisticians, and others have
tried to develop interpretations of probability that are consistent
with “deterministic chances”, others simply declare that the project
is hopeless on its face, or have general arguments against the very
possibility, and every view developed so far developed has its
critics. But I do not wish to just add another interpretation to the
list. I have no interpretation to offer here. I am merely pointing out
that the problem is not an easy one.

Typically, those who object to the very possibility of determin-
istic chances have in mind something like the following argument:
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an omniscient being would not use the stochastic models of gene
expression that we are examining. Therefore, the probabilities in
our models must be the result of our ignorance and therefore they
must be subjective (or at least, not objective). If this is simply what
you mean by subjective, I have nothing to say. I agree; they do not
represent fundamental, indeterministic laws of nature. However,
this view of subjectivity is so extreme that it would classify
processes like the melting of an ice cube, the diffusion of a gas in
a box, or the movement of proteins in a cell, in the same way that it
treats the “probability” in the claim, “I will wait and call my mother
tomorrow, she is probably asleep right now” e namely, as funda-
mentally about our degrees of belief. This is far too high of a price to
pay and introduces far more problems than it solves.
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