BAS C. VAN FRAASSEN

RELATIVE FREQUENCIES*

The probability of an event is the limit of its relative frequency in the long
run. This was the concept or interpretation developed and advocated in
Reichenbach’s The Theory of Probability. It cannot be true.

After so many years and so much discussion, it is a bit vieux jeu to
attack this position. But the arguments tell equally against such related
views as those of Kolmogorov and Cramer, which surround the standard
mathematical theory. Even so, I would not attempt this, if it were not that
I also want to defend Reichenbach. For the heart of his position is that the
statistical theories of physics intend to make assertions about actual
frequencies, and about nothing else.

In this, I feel, Reichenbach must be right.

I. ABSOLUTE PROBABILITIES
1. The Inadequacy of Relative Frequency

What is now the standard theory of probability is due to Kolmogorov, and
itis very simple. A probability measure is a map of a Borel field of sets into
the real number interval [0, 1], with value 1 for the largest set, and this
map countably additive." Somewhat less standard is the notion of a
probability function, which is similar, but defined on a field of sets and
finitely additive. Relative frequency lacks all these features except that it
ranges from zero to one.

This is not news; I need simply marshall old evidence (though I must
say that it was a surprise to me, and I painfully reconstructed much of this
along the way as I studied Reichenbach).

Let the actual long run be counted in days: 1 (today), 2 (tomorrow), and
so on. Let A (n) be an event that happens only on the nth day. Then the
limit of the relative frequency of the occurrence of A(n) in the first n +g
days, as g goes to infinity, equals zero. The sum of all these zeroes, for
n=1,2,3,...equals zero again. But the union of the events A (n) — that

Synthese 34 (1977) 133-166. All Rights Reserved
Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland



134 BAS C. VAN FRAASSEN

is, A(1)-or-A(2)-or-A(3)-or...; symbolically {A(n):ne N}~has
relative frequency 1. It is an event that happens every day.

So relative frequency is not countably additive.? Indeed, its domain of
definition is not closed under countable unions, and so is not a Borel field.
For let B be an event whose relative frequency does not tend to a limit at
all. Let the events B(n) be as follows: B{n) = A(n) if B happens on the
nth day, while B(n) = A, the ‘empty’ event, if B does not occur on the nth
day. The limit of the relative frequency of B(n) exists, and equals zero, for
each number #. But B is the union of the events B(n), and the limit of its
relative frequency does not exist.

A somewhat more complicated argument, due to Rubin and reported
by Suppes, establishes that the domain of relative frequency in the long
run is not a field either.’ Let us divide the long run of days into
segments: X(n) is the segment which stretches from segment X(n —1) to
day 2" inclusive (X (1) is just the first and second day). We note that X(n)
is as long as the sum of all preceding segments. Call X(#) an odd segment
if n is odd; an even segment otherwise. Let A be an event that happens
every day in every odd segment; but on no other days. In that case, the
relative frequency of A has no limit in the long run. A is not in the domain
of definition of relative frequency.

We let B and C be two events that overlap inside A, in a regular way:
Let B happen on all the even dates on which A happens, and on all the
odd dates when A does not happen. And let C also happen on all the even
dates on which A happens, and in addition, on all even dates when A
does not happen. About B and C it is true to say that in each segment,
each of them happens every other day. So each has relative frequency 3.

But the intersection B~ C is curious. Up to the end 2" of segment
X(n), there have been exactly half as many (B ~ C) days as there were A
days. So if B n C had a relative frequency in the long run, so would A.
And A does not.

Let me sum up the findings so far. The domain of relative frequency is
not closed under countable unions, nor under finite intersections. But
still, countable additivity fares worse than finite additivity. For when the
relative frequency of a countable union of disjoint events exists, it need
not be the sum of the relative frequencies of those components. But if the
relative frequencies of B, C, and B u C all exist, while B is disjoint from
C, then the relative frequency of B U C is the sum of those of B and C.
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We cannot say therefore that relative frequencies are probabilities. But
we have not ruled out yet that all probabilities are relative frequencies (of
specially selected families of events). For this question it is necessary to
look at ‘large’ probability spaces; specifically, at geometric probabilities.

It is sometimes said that a finite or countable sample space is generally
just a crude partition of reality — reality is continuous. Of course you
cannot have countable additivity in a sensible function on a countable
space! But the problem infects continuous sample spaces as well. In the
case of a mechanical system, we would like to correlate the probability of
a state with the proportion of time the system will spend in that state in the
limit, that is, in the fullness of time. But take a particle travelling forever
in a straight line. There will be a unique region R(n) filled by the
trajectory of the particle on day (n). The proportion of time spent in R ()
tends to zero in the long run; but the particle always stays in the union of
all the regions R (n).

Geometric probabilities such as these have further problems. Take
Reichenbach’s favorite machine gun example, shooting at a circular
target. The probability that a given part of the target is hit in a given
interval, is proportional to its area, we say. But idealize a bit: let the
bullets be point-particles. One region with area zero is hit every time: the
set of points actually hit in the long run. Its complement, though of area
equal to the whole target, is hit with relative frequency zero.

This example is very idealized; but it establishes that in certain cases, it
is not consistent to claim that all probabilities are relative frequencies.

2. Weaker Criteria of Adequacy

When an interpretation is offered for a theory such as that of probability,
what criteria should be satisfied? In logic, we tend to set rather high
standards perhaps. We expect soundness (all theorems true in the models
offered) and completeness (each non-theorem false in some of those
models). In addition we hope for something less language-bound and
more informative: the relevant features of all models of the theory must
be reflected in the models offered by the interpretation. This is impre-
cisely phrased, but an example may help. Take the truth-functional
interpretation of propositional logic. Any model of that logicis a Boolean
algebra. Every Boolean algebra can be mapped homomorphically into
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the two-element {T, F} Boolean algebra pictured in the truth-tables. And
if a # 1 in the original, the map can be such that the image of a isnot 7.

Translating this to the case of probability theory, we would ask of the
relative frequency interpretation first of all that the structures it describes
(long runs, with assignments of real numbers to subsets thereof through
the concept of limit) be models of the theory. But that would require
relative frequency to be countably additive which it is not. Secondly we
would ask that if we have any model of probability theory, we could map
its measurable sets into the subsets of a long run, in such a way that if the
originals have distinct probabilities, then their images have distinct
relative frequencies. The machine gun example shows this is not possible
either.

In his book, Reichenbach certainly considered many questions con-
cerning the adequacy of the relative frequency concept of probability. His
exact formulation I shall examine in Part III below. But his book
appeared in 1934, too early to be addressed to Kolmogorov’s mathemati-
cal theory (which appeared in 1933), and much too early to guess that the
latter would become the standard basis for all work in the subject. So
Borel fields and countable additivity were not considered by Reichen-
bach. In addition, he construed probability theory on the paradigm of a
logical calculus. This introduces the extra feature that probabilities are
assigned to only denumerably many entities, for these are all denotations
of terms in the language. So Reichenbach’s discussion is concerned with
weaker criteria of adequacy than I have listed.

Turning to representability, remember that Reichenbach could or
would not consider more than denumerably many distinct probabilities at
once. To show that he was right about this, in a way, I will have to give
some precise definitions. A probability space is a triple S =(K, F, P),
where K is a non-empty set, F a Borel field on K, P a map of F into [0, 1]
such that P(K)=1 and P is countably additive. The infinite product
S*=(K*, F* P*) is formed as follows: K* is the set of all maps o of N
(the natural numbers) into K; F* is the least Borel field on K* which
includes all the sets

{oeK*:a(l)eA,,...,0n)eA,}=A,%X-+-XA, XK*

forsets Ay, ..., A, in F; and P* is the probability measure on F* such
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that
P*(A1X' - 'XAnXK*)ZP(Al) o P(An)

which exists by a theorem of Kolmogorov. A long run is simply a member
o of K*,

The relative frequency of A in o — where A is a member of F - call it
relf (A, o), is defined by

relf (A, o) = limit ;11— 5 a(o(i))
n>0 R =1

where a is the characteristic function of A ; thatis, a(x) equals 1if x is in
A and equals zero otherwise. The Strong Law of Large Numbers * has the
consequence

P*{oeK*:relf (A,0)=PA)}) =1

from which we can infer, as a minor consequence, that there will be at
least one long run ¢ such that the probability P(A) is the relative
frequence of A therein. I shall attach no other importance to the function
P*, using it only to establish the existence of certain long runs.

The intersection of countably many sets of probability measure 1, must
have measure 1 again. Thus we generalize thatif A, ..., Ay, ... areall
members of F, then

P¥{oeK*:relf (A, 0)=P(A)fori=1,2,.. h=1
also, and therefore

If X is a denumerable subfamily of F, there exists a ‘long run’
o in K* such that, for each set A in X, P(A) =relf (4, o).

In other words, any denumerable family of probabilities can consistently
be held to be reflected in the relative frequencies in the actual long run.

3. Square Bullets

Although relative frequencies are not countably additive, and so are not
probabilities, we have just seen something very encouraging. Any count-
able family of probability assertions can consistently be interpreted as a
family of assertions of relative frequencies. This creates the temptation to
do a bit of Procrustean surgery. Perhaps large probability spaces can be
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approximated by small ones, and a small probability space can be
identified with a suitably chosen part of a relative frequency model. (On
the subject of choosing a suitable part of a relative frequency model,
Reichenbach explicitly rejected von Mises’ restriction to ‘random sets’. I
feel that Reichenbach had good reasons for this; and also, I see little gain
in the partial representation theorems the randomness tradition provides,
s0 I shall say no more about this.)

Let me give a simple example to show the possibilities in this line, and
also its limitations. Let the machine gun still fire point-bullets, but let the
target be a line segment, conveniently coordinatized by distances as the
interval [0, 1]. All the bullets fall on it, and the probability that interval
[a, b]is hit equals its length b — a. More generally, the probability a Borel
set E < [0, 1]is hit equals its Lebesgue measure. We would have the same
problems as before trying to interpret this situation exhaustively in terms
of relative frequencies. But why try, when perception thresholds are not
infinitely fine? Given the essential human myopia, appearances must be a
fragmentary part of reality. (Anyway, bullets are not point-sharp; they
may be round or square.) ‘

Any real interval [a, b] is of course suitably approximated by the
rational intervals [a’, b'] such that a’'<a<b<b' and a’ and b’ are
rational fractions. There are only countably many such rational intervals.
Let us take the field F they generate (still countable), and find a long run
in which the relative frequency of hits in a set in that field equals the
Lebesgue measure of that set. Let that long run be o, and let us begin our
reconstruction.

1) m(A)=relf (A,0)if AisinF,

Now in addition, if B;2 -+ 2B, 2 - - - is a series of sets in F, and B
their intersection, let us say

2 m(B) = limit relf (B,, o)

when that exists.

This function m is a pretty good shot at the probability. (Perhaps even
identical with it; let us not stop to inquire.) Since it assigns zero to every
countable point-set, it is not identifiable with any relative frequency. But
it is approximated by the function relf (X, o) restricted to field F.



RELATIVE FREQUENCIES 139

Let us suppose for a moment that all and only functions thus approxi-
mated by relative frequencies are probabilities. This will remind us of
very typical mathematical moves. If a structure is not topologically
closed - if the limits of converging series in the structure do not always
belong to the structure —then they are ‘put in’. That is, the mathemati-
cian’s attention switches to a larger structure, which is closed under such
operations. The original topic of concern is looked upon as an arbitrarily
hacked out fragment of the important structure. (Consider the definitions
of Hilbert space and of tensor products of Hilbert spaces, as example.) So
did probability theorists simply widen the original topic of concern -
relative frequencies —in the traditional, smooth paving, mathematical
fashion?

But no, that cannot be. The family of probability measures does not
include relative frequencies in long runs, except on finite sample spaces.
The limit points, if that is what they are, are not added onto the original
family, but the originals are thrown out. Moreover, those limit functions
are not extensions or extrapolations of relative frequencies. In the above
example, m(X) is not an extension of relf (X, o), for the two disagree on
countable sets; m(X) is only an extension of the result of restricting
relf (X, o) to field F.

The construal of probabilities I have just described in a simple case is
explained by Reichenbach for more interesting examples in his Chapter
Six. Let the target be a region A on the Cartesian plane. A geometric
probability will be a measure m on the plane that gives 1 to A, and for
which

®  m®=[] oy drdy

B

for each subregion of A, for a function ¢ - the probability density — which
is characteristic of m.

We can proceed as follows: Cut the region A into # subregions of equal
area, call them E, .. ., E,. The probability space which has m restricted
to the Borel field generated by E, ..., E, is a finite probability space.
Therefore the probability assertions about it can be interpreted through
relative frequencies. Call this space ;.
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Construct space S, by refining S1: each region E;, is subdivided into »
regions of equal area, and the probabilities assigned are again the
restriction of m to the (Borel) field generated by this (finite) set of small
regions. And so forth.

Given now a series of sets B, =2+ -2 B, 2 - + where B, is a measura-
ble set in S, itis clear that m will still be defined for their intersection, and
the wvalue there assigned by m is the limit of the values
m(B), ..., m(By),....From this Reichenbach infers that there must be
a parallel ‘empirical construction’. The probability of B,, he says, is
‘empirically determined’ by estimating the long run relative frequency on
the basis of finite samples. If the limit of these probabilities exists, we then
assign that limit to the intersection N{B,:k=1,2,3,...}. With the
probabilities so determined, we form the probability space S which has as
measurable sets the least Borel field containing all the measurable sets in
each space S;.

The idea s clearly that § is the mathematical limit of the series of spaces
Si,...,8k ... and that the representation of S as such a limit of finite
spaces constitutes a representation in terms of relative frequencies. For
each space S has only finitely many measurable sets, so there will be a
long run o of points such that m(B) =relf (B, o) for each measurable set
B of Sk-

But in fact we have nothing like a representation in terms of relative
frequencies here. Let S, be the space that has as measurable sets all the
ones from the spaces Sy, . . . , Sk, . . .; and let the probability of B in S, be
exactly what it is in those spaces S, in which B is measurable. Then S is
the least upper bound, in a natural sense, of the series S, ..., 5, ....In
addition, the measurable sets of S, form a field — but not a Borel field.
However, there are only countably many of them so there is a long run of
points ¢’ such that the probability of B in S, equals relf (B, o'). Surely,
from the frequency point of view, S« is the reasonable extrapolation from
the finite spaces for which the probabilities are empirically determined.

The space S contains many more measurable sets than S, does, and
there is no single long run in which the relative frequencies reflect the
probabilities in S. Thus it is not reasonable to present the relation
between S and the finite spaces S, as showing that the probabilities in §
are a mere extrapolation from, or representable in terms of, relative
frequencies.
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4. Representation of Probabilities

We already know that we cannot have a representation of probabilities as
relative frequencies. But an approximation theorem, if strong enough, is
a sort of representation theorem. If all probability measures are suitably
approximated by (series of) relative frequency functions, then we can say
that probabilities are at least representable in ferms of (if not as) relative
frequencies. And the preceding section holds out this hope.

But this would not be a good representation in this case. Indeed, 1
suspect that Reichenbach was misled in this. Let us try to picture the
practical context in which we take samples and estimate probabilities.
This work is done in what we might call a ‘practical language’. In this we
state experimental and sampling results — always proportions in finite
classes — and also extrapolate these results (by induction, if that exists; by
guessing, if that is any different) into hypotheses about probabilities.

In any experiment or observation I can explicitly check only finitely
many samples, and these of finite size. Moreover, my language has only
countably many expressions in it, so I can explicitly extrapolate only to
countably many sets. This must be what suggested to Reichenbach that he
need only concern himself directly with finite sample spaces, extrapolate
to countable series of these, and worry only about finite unions and
intersections. After all, the language cannot have explicit designations for
all the countable unions of classes designated in it.

But if this was the train of thought, then he was misled. For our
practical language does certainly contain expressions like ‘%imit’, ¥, and
(J”. It has numerals and number variables. And even though it is
countable, it has a systematic way of designating countable unions and
limits of series. Our extrapolations, always in this language, are fo
countable unions and infinite sums. And the method of extrapolation,
however haphazard in its inductive leaps, rigidly follows countable
addition. These assertions I make about the practical activity of going
from sampling data to the framing of probabilistic hypotheses, models,
and theories; and what I have to say further will be baseless if in fact
scientists are happily violating countable additivity when they propose
their hypotheses - but I do not believe so.

If all this is true, the picture drawn in the preceding section (and
following Reichenbach’s Chapter Six) is not realistic. For there the
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practical language was assumed to contain itself only descriptions of the
finite sample spaces Sy, S», . . .; the ‘nearest’ limit was a frequency space
S« which was ignored; and the extrapolation was to be outside the
practical language to a function m defined on a large family of sets not
designatable in the language itself. The only criterion of adequacy
considered is that m agrees with all the finitary extrapolations from
sample data (by ordinary conjunction, disjunction, and negation),
because that is all that is assumed to rear its head in the practical context.

I shall now use the Law of Large Numbers - or rather the corollaries to
it in Section 2 above —-to give an explicit representation of all prob-
abilities in terms of (not as) relative frequencies. This will be different
from the representation by approximations so far discussed, in that it will
assume that what we extrapolate to is relative frequencies on countable
families of sets, and that the extrapolation to countable unions is indeed
by countable addition.

A probability space is a triple S = (K, B, P) where K is a non-empty set,
B aBorel field on K, P a countably additive map of B into [0, 1] such that
P(K)=1. A frequency space is a couple M ={g, F) for which there is a set
K such that

(a) o is a countable sequence of members of K
(b) F is a family of subsets of K
(c) relf (A, o) exists for each A in F.

I shall call M ={o, F) a special frequency space exactly if relf (X, o) is
countably additive on F in so far as F is closed under countable unions;
and F is a field:

(d) Fisafieldon K

(e) if{A;},i=1,2,...isa countable family of disjoint sets, all in
F, and their union A is also in F, then relf (A,o)=
Yoo, relf (A, o).

Let us shorten ‘special frequency space’ to ‘sfs’. We have already seen in
Section 2 that for each probability space S =(K, B, P) and countable
subfamily G of B there is a sequence o such that P(A) =relf (A, o) forall
A in G. Without loss of generality we can say: countable subfield G of B,
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for if G is countable, so is the field it generates. Moreover, because P is
countably additive on B, so is the function relf (—, o) on G. So (o, G) isan
sfs.

A good family will be a family Z of sfs, such that (a) the union of all the
fields G of members (o, G) of Z is a Borel field, and (b) if (o, G) and
(o, G') are both in Z, and A in both G and G’, then reif (4, o) =
relf (A, o). The space associated with a family Z of frequency spacesis a
triple S(Z) = (K, F, P) such that F is the union of all the second members
of elements of Z, K is the union of F, and P the function: P(A)=gq iff
relf (A, o) =q for all {g, G) in Z such that A isin G.

It will be clear that the space $(Z) associated with a good family Z of sfs
is a probability space. Moreover, the weak representation result of the
section before last shows at once that there is for each probability space a
good family of sfs with which it is associated.

1. CONDITIONAL RELATIVE FREQUENCIES
1. The Inadequacy of Defined Conditional Probabilities
The standard (Kolmogorov) theory defines the conditional probability by

(1) P(B/A)=P(BnA)/P(A) provided P(A)#0.

Thus the probability that it will rain on a given day if the sky is overcast, is
well-defined if and only if the probability that the sky is overcast is not
itself zero.

There are other theories, specifically those of Renyi [8] and Popper [6]
in which P(B/A) is taken as well-defined also in (some) cases in which
P(A)=0. The relevant features of those theories here are:

) P(BNnC/A)=P(B/A)P(C/BnA) if all these terms are
defined,

3) If P(—/A) and P(—/B) are both well-defined functions, they
have the same domain as P(—/K),

when the sets B, C, A are measurable sets in a relevant sort of conditional
probability space with ‘universe’ K ~i.e., when P(A/K), P(B/K),
P(C/K) are defined.
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Clearly Reichenbach’s theory does not belong to the first sort. The
consideration of relative frequencies is a main motive for dissatisfaction
with the definition 1. But as I shall also show, conditional relative
frequencies do not quite fit Renyi’s or Popper’s theory.

When a submarine dives, filling its ballast tanks to some extent with
water, and then the engine is switched off, it remains stationary.5 Its
center of gravity is at a certain exact depth; that is, lies in one of the planes
cutting the water horizontally. The probability of its coming to lie in that
exact plane, is zero. What is the probability that it lies in that plane and
north of the forty-first parallel, given that it lies indeed in that plane?

I imagine the practical mind can always find some way around such
questions. Recall, however, the enormous distance of idealization we
have seen between actual repetitive phenomena, even extrapolated to the
fullness of time, and probability spaces. I do not think the way around
should be introduced with the statement such ‘unreal’ or ‘impractical’
problems have no place in the business-like mind of the probability
theorist.

But my point is not to ask for improvements in probability theory here.
I only want to point out a further difference between probabilities and
relative frequencies. Even when A has relative frequency zero, the
relative frequency of B’s among the A’s may just as well make sense.
Suppose we toss a die forever, and even numbers come up only ten times.
Unlikely, but possible. In such a world, the probability that a given toss
yields an even number is, on the frequency view, zero. But surely, even
there, the probability that a particular toss yields six, if this toss is one of
those that yield even, must be well-defined. It is exactly the proportion of
sixes in those ten tosses.

More abstractly, let o be just the series of natural numbers. If A is the
set of integral powers of 93, then relf (A, o) is zero. But those powers
themselves form a subseries o', If B is the set of even powers of 93, then
relf (B, o) is not only well-defined, but is already 3. And should this not
exactly be the relative frequency of the even powers among the integral
powers?

The subject cannot be simple, however. If A is a set of members of o,
let o(A) be the subseries of o consisting of members of A. I shall worry
about exact definitions later. Let the condifional (relative) frequency
relf (B/ A, o) be construed as relf (B, o(A)). In that case we would like to
know when that conditional frequency is defined.
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As T pointed out, some theories of probability (like Renyi’s or Pop-
per’s) take conditional probability as basic. But these have feature 3
above; so that if P(B/K), P(C/K), and P(B/A) are all defined, then so is
P(C/A). We can get nothing so nice for conditional frequencies.

For let A and B be as in the natural number example of the second
paragraph before last. In addition, let C be a subset of A whose relative
frequency in o(A) does not tend to a limit. In that case, relf (A, o) =0,
and since B and C are subsets of A, relf (B, o)=0=relf (C, o).
Moreover, A is a perfectly good ‘antecedent condition’ because
relf (B/A, o) is defined and equals 3. But relf (C/A, o) is not defined.

We cannot localize the problem by noting that C has measure zero
from the point of view of ¢. First, so did B and relf (B/A, o) is defined.
Second, there are no powers of 93 which are even numbers, but if E is the
set of even numbers, then relf (E U C, o) =% while relf (E U C/A, o) is
not defined.

The subject of conditional frequencies is therefore not correctly
treated by either Kolmogorov, or Popper, or Renyi. In the next two
sections I shall indicate ways in which one might go about providing a
general theory. Reichenbach’s attempts I shall consider in Part III.

2. The Natural Frequency Space

In Part I, I defined a frequency space as a couple (o, F) for which there
exists a set K such that

(a) o is a countable sequence of members of K
(b) F is a tamily of subsets of K
(c) relf (A, o) exists for each A in F.

We can easily map any such structure into what I shall call the natural
frequency space {(w, F(w)) where

(a) w is the natural number series (1,2,3,...)
(b) F(w) is the family of sets A of natural numbers such that
relf (A, w) exists.

What exactly is in the family F(w) is very mysterious. The map A >
{i:o(i)e A} will relate (o, F) to {w, F(w)) in a natural way, preserving
relative frequencies. It also preserves the set operations on the members
of F which are sets of members of o.
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If K has in it members foreign to o, these will of course play no role in
the determination of relative frequencies, and are ignored in this map.

Before turning to conditionalization, I wish to make relative frequency
and conditional relative frequency precise. If A is in F(w), let a be its
characteristic function: a(i)=1if i isin A, and a (i) = 0 otherwise. In that
case:

+a(n)=Y{a(m):m<n}

+a(n)
n

rel(a,n)=
relf (A) = li_nixit rel (a, n)

rel (ba, n)

relf (B/A) = 1,}93;[ rel (a, n)

it 222
n—cw +a(n)

where ba is the characteristic function of AB, namely ba(n) = b(n)a(n).
What I would like to show now is that the natural frequency space is

already closed under conditionalization (insofar as it can be). That is,

there is for each pair of sets B and A in F(w) another set A — B such that

relf (A — B) exists if and only if relf (B/A) exists; and if they
exist, they are equal.

We find this set by constructing its characteristic function (a—b). As a
first approximation, I propose

. 1 if the ith member of A isin B
(a—b)(i)= .
0 otherwise .

The members of A have of course a natural order: if A is{1, 3, S} then 3 is
its second and $ its third member. If A is infinite, the above will do very
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well, for we shall have

rel (a—b, n)=j—-@-——:—bl(n—)

= (The number of B’s among the
firstn A’s)/n

_+ab(m)
" ta(m)

where m is the number at which the nth A occurs. The variables n and m
go to infinity together, and the lefthand limit equals the righthand limit.

If A is finite, we need a slight emendation. For example, the relative
frequency of the even numbers among the first 10, should be 3. If we kept
the above definition, it would be zero. So we call k the index of A if its
characteristic function a takes the value 1 exactly k times. Each number i
is of course a multiple of k plus a remainder r (ranging from one to k; this
slightly unordinary usage of ‘remainder’ makes the sums simpler). We let
a—b take value 1 at i exactly if the (r}th A is a B. In that way,

rel (a—b)(k)

__the number of B’s among the first k A’s
- k

rel (a—b)(km)

__m % the number of B’s among the firstk A’s
mk

_+Ha—b)(k)
B k

which, if there are only k A’s, is just correct. If we call that number x/k,
we also see that

+(a—b)km +r)<mx+(k—1)
km+r Tkm+(k—1)

which series converges to x/k as m goes to infinity. So this is indeed the
correct characteristic function.
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As a minor exercise, I shall now make this precise. Let 0 and 1 stand
also for those characteristic functions which belong to A and N respec-
tively, that is, take constant values 0 and 1.

(i) index (a)=k iff Y {a(n):neN}=k

[let k here be any natural number, or o]
(it) i~k =r iff either k =00 and i=r, or

@m)(mk +r=1i) where 0<r=<k.
(i) #a(ry=iiff a(i)=1 and +a(i) =r ~index(a)

b#aifa#0
1 otherwise

(iv) (a—b)= {
Here (iii) must be read as defining ‘the rth (modulo the index of A!) A
occurs at i’. Thusif A is{1,. .., 10}, then the Sth A occurs at 5; also the
25th (modulo the index 10) occurs at 5. So #a(5)= #a(25) =35 in this
example. If this “25th” A occurs at 5, then a — b should take the value 1
at 25 exactly if b takes the value 1 at 5. Thus (a — 5)(25) =b(#a(25)) =
b(5). This is what (iv) says. In the case where a never takes the value 1, I
have arbitrarily given a — b the value 1 everywhere. This is only a trick to
keep the object well-defined.

The class A — B is the one which has characteristic function a —b.
While the operation — is very ‘linear’, it is not really interesting. It is
certainly not a conditional in the sense of a logical implication, because
even the analogue to modus ponens would not hold. It serves its purpose
of showing that the natural frequency space already contains all the
conditional relative frequencies; but in its own right, it is no more than a
mathematical objet trouvé.

3. A Partial Algebra of Questions

Ishall now continue the general theory of relative frequencies, taking the
conditionality for granted. That is, we know at this point that
relf (B/ A, o) can be reduced to an assertion of ‘absolute’ formrelf (X, o).
Henceforth, the conditional concept relf (B/ A, o) will therefore be used
without comment.
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Let us view suitable relative frequencies in the long run as answers to
questions of the form ‘What is the chance that an A is a B?’ The terms A
and B I take to stand for subsets of a large set K; the set of possible
situations or states or events. The question I shall reify as the couple
(B, A). Since the answer would be exactly the same if we replaced ‘a B’ in
the question by ‘an A which is a B’, I shall simplify the matter by
requiring that B < A. This couple is a question on K, and I shall call B the
Yes-set and A the Domain of the question. The answer relative to long
run o (a countable sequence of members of K) will be relf (B/A, o), if
indeed relf (B/ A, o) exists; otherwise the question is mistaken relative to
.

The word ‘chance’ was proposed by Hacking as a neutral term, I use it
here, but mean of course exactly what Reichenbach thought we should
mean with ‘probability’. The occurrence of actual long run o in the
determination of the answer makes the question empirical.

(a) Questions. A question on set K is a couple g =(qY, gD) with qY <
qD < K. Call questions q and q' comparable exactly if gD = q'D. The set
lq] of questions comparable to g is clearly ordered through the relations
on its first members (Yes-sets), and we could define

gnq'={qYnq'Y,qD)~q=(qD —qY, dD)

and so on, to show that [¢]is a family isomorphic by a natural mapping to
_the powerset of gD. ‘
The operation of conditionalization which I shall now define, takes us
outside [q]:

q->q'={@Ynq'Y,qY)

unless of course qY = gD. This leads us to the next topic.

(b) Unit questions. If q is a question and qY = gD, I shall call it a unit
question. Its answer must always be 1; and in [¢] it plays the role of unit,
that is, supremum of the natural partial ordering.

Henceforth let Q be the set of questions on K, and U the set of unit
questions thereon; let u, v, . . . always stand for unit questions.

The unit questions are not comparable to each other. But they are
easily related nevertheless; they form a structure isomorphic to P(K)
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under the natural map: A to (A, A). Let us use the symbols —, A, v, <in
this context, to maintain a distinction between the natural ordering of the
unit questions and that of the questions comparable to a given one:

—wu=(K—-uY,K-uY)
unv=uUYrnuY,uYnovY)
usviffuYcoY

where of course u ={uY, uD) and so on. Every question is a conditionali-
zation of unit questions:

q={qY, qD)={qD, qD)~>{(qY,qY).

Therefore define

uq ={qD, qD)
vq =(qY, qY)
q=(uq-vq).

We note that if ¢ and q’ are comparable, the operations on them are
definable in terms of those on unit questions:

—q = uq > wq

(g ng’)=uq~>(vqrvq)
(quq)=uq->(vqvvq)
gcq'iffvg<vq’.

It would not make much sense to generalize these except for — which is of
course defined for all questions. However, I want to add one operation on
all questions

q-q9'=uq->(vqnrvq’)

which reduces to N when ¢ and q' are comparable, but is otherwise not
commutative, However, it gives the comparable question to g that comes
closest to being its conjunction with gq'.

(¢) The logic of questions. Since I have not given a partial ordering of all
questions, it may seem difficult to speak of a logic at all. Should we say
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that q implies q' if the Yes-set of q is part of the Yes-set of ¢'? Or should
we require in addition that their Domains are equal? Or that the No-set
(Domain minus Yes-set) of ¢’ be part of the No-set of g? The minimal
relation is certainly that the Yes-set of g be part of the Yes-set of q’. We
may think of a Yes-No question q as related to a proposition which is true
atx in K if x € qY, false at x if x € (qD — qY), and neither true nor false in
the other cases. In that context the relation of semantic entailment is just
that minimal relation (corresponding to valid argumﬁénts) of ‘if true, then
true’. So let us define

qgtq' iffqY=q'Y
iff ¢ » ¢’ is a unit question .

Then we note that the analogue to modus ponens holds, but only because
something stronger does

q-(q-»q)Fq~>q'lFq

which should not be surprising, because these conditionals are just like
Belnap conditionals (a Belnap conditional says something only if its
antecedent is true; in that case it says that its consequent is true - see [2],

[11]).

® q->q'=vq~>vq'

(ii) 90> (q>4q") =qo~> (vg~>1vq)
=qo~>(vqY Nnvq'Y, vgD)
=qo->(vq Avq')
=qgo>(q 94"

Corollary: u—» (v->v)=u->(vAv')

(iii) (qo=>9)>q'=(qY NqY,qoY)~>q’
={q0YNqY Nq'Y,q0Y nqY)
= (vqo A vq) > vq’
=(q0°9)~>q’

Corollary: (u»v)>v'=(uArv)>v’

(iv) fuosu<su' thenu->ug=W'->u)=>Ww ->uy).
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The second and third show that iteration is trivial; the fourth is a trivial
corollary which I mention because of the way it recalls the ‘multiplication
axiom’. Which brings us to the next topic.

(d) The multiplication axiom. Reichenbach’s fourth axiom was the
‘theorem of multiplication’. In our symbolism, it states

(AM) Ifrelf (B/A,o)=p andrelf (C/AnB,o)=r
exist, then relf (B C/A, o) also exists and
equalsp - r.

The answer to the question g, relative to o is
relf (qY/qD, o) =m(q) .

Just for the moment, let A, B, C stand equally for the unit questions,
(A, A), (B, B), etc. Then the axiom clearly says:

If m(A-B)=p and m(AnB.»C)=r exist, then
m(A - .B n () also exists and equals p.r.

Because X—» Y =X-> XY, there are only three sets really operative
here: AnBnNC, AnB, A. So we can phrase this also as follows:

Ifupsu=u',andmu’ - u)=p and m(u - u,) =r exist, then
so does m(u' - ug) and equals p.r.

Thus in the favorable case of p # 0, which here means only that a certain
conditional probability is not zero,

m(u' - ug)

) ifuposu<u'.
m

(AM®)  m(u->up) =
But at the end of subsection (c) we just saw that with uo<u <u' given,
u->uo=u'-u)~-> (' - uy). So we have

mu'=> uo)

m[(u‘9u)_)(u’—>u0)]= m(ul_>u) .
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Let us now generalize this to conditionals for which the antecedent and
consequent are not specially related:

m(q->q")=m(vqg->(vq rvq"))

_m(uq > (vq ruq'))
m(uq > vq)
_mlq-q)
m(q)

provided m(q) #0

where I went from the first line to the second by the reflection that
uq <vq <uvq A vq' always, and applying (AM™).

We have seen that there is in the general theory of questions ‘“What is
the chance that an A is a B?” there is a logically reasonable conditionaliz-
ing operation; relative frequency of the conditional object looks quite
familiar in the relevant special cases.

III. REICHENBACH’S THEORY

Reichenbach had two aims in writing The Theory of Probability. He
wanted to present a good axiomatization of probability theory, and also
to defend his frequency interpretation. The two aims interfered some-
what with each other. But the book is a monumental and instructive work,
with many fascinating features that a narrower or less committed enter-
prise would certainly have lacked.

1. The Formulation

Logic had a bad influence. The language is essentially that of quantifica-
tional logic, with the quantifier ranging over the positive integers. There
are special function terms x, y, . . . such that x; is an individual (event) if i
is an integer, and class terms A, B, . ... The operators are Boolean (on
the classes); the single predicate is the binary € of membership; and the
connectives are those of propositional logic plus a special variable
connective

3_

p
where p is any numerical expression denoting a real number (if you like,
between zero and one inclusive). This special connective is eventually
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allowed to combine any sentences, but to begin is considered only in the
context

(1) (x: €A i‘)’ieB)-

To understand this, reason as follows: If this coin be tossed, the probabil-
ity of its showing heads equals 3. This asserts a correlation between two
sequences of events: the event x,, is the nth toss of the coin, and the event
y" the nth landing of the coin.

There is no gain, formally speaking, in this consideration of more than
one sequence of events. If {x;, y;}, ... are the sequences of events desig-
nated, we could construct a single sequence {w;} such that for each n, w, is
the sequence (X,, ., . . .). Inthat case the class terms A, B, . . . would have
to be reinterpreted accordingly; to the old formula “y,e B” would
correspond a new formula “w; € B”’ with the same truth-conditions.
(That is, B’ would designate the class of all sequences (a, b, . . .) such that
b is in the class designated by B.) In that way, all basic probability
assertions would take the form

) ()w;cA -%-w,-eB).

The event w, is the complex totality of all the events happening on the nth
day, say, and the sequence of elements w = {w,} plays the role of the long
run ¢. Thus 2 would in my symbolism so far be

3) P(B/A,w)=p

for the truth-conditions of 2 and 3 (as explained respectively by Reichen-
bach and in part IT above) are the same.

2. The Multiplication Axiom

In a paper published in 1932, preceding the book, Reichenbach used
special ‘reversal axioms’ to govern inverse calculations. An example
would be the inference (using Reichenbach’s own abbreviations):

(1) If A and B are disjoint, then P(A UB)=P(A)+P(B).
Therefore, in that case, if P(A UB)=p and P(A)=gq, then
P(B)=p—q.
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This inference contains a hidden assumption, namely that all the relevant
terms are well-defined (all the probabilities exist). Strictly speaking, the
premise should be:

2) If P(A) and P(B) exist, and A and B are disjoint, then
P(A v B) exists and equals P(A)+P(B).

And a second premise needed in the inference is then

3) If P(A UB) and P(A) exist, and A and B are disjoint, then
P(B) exists.

The special reversal axioms were apparently too weak (see page 61 of The
Theory of Probability), and in the book their role was played by a single
‘Rule of Existence’ (page 53). This rule seems to be correct, and Reichen-
bach is very careful in its use.

But extreme care does seem to be needed. On page 62 Reichenbach
gives as his fourth axiom the ‘Theorem of Multiplication’.

“4) (A ?B).(A.B > C)>(3w)(A —a-B.C) - (w=p.u)

where (A =-B) is short for “(i)(x;€ A =y, B)” and so forth. He
p 14

concludes via the Rule of Existence that

%) P(BNC/A)=P(B/A)P(C/A.B)

“‘can be solved according to the rules for mathematical equations for each
of the individual probabilities occurring’. This is certainly true, but only a
very careful reader will not be tempted to infer if P(BnC/A) and
P(B/A) both exist and equal zero, then P(C/A n B) exists though its
numerical value cannot be determined. This inference would be invalid
on the frequency interpretation. (This can be seen from the example at
the beginning of Part II: replace ‘A’ by ‘K’ and ‘B’ by ‘A’ in equation 5,
to get P(C/K)=P(A/K)P(C/A) given that AnC=A and all are
subsets of K.) Reichenbach does not make this inference, but neither does
he point out its invalidity, which is a very special feature of his theory,
because it is involved with the fact that P(B/A) may exist while P(C/A)
does not, although P(C/K) does - a feature not shared by the theories of
Kolmogorov, Popper, and Renyi.
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I should mention the very nice deduction Reichenbach gives of the
multiplication axiom from the weaker axiom that P(BNC/A)=
flP(B/a), P(C/A n B)] for some function f. His proof assumes that f is
differentiable, but he says that this requirement can be dropped.

3. The Axiom of Interpretation

Reichenbach’s second axiom (Normalization) has the corollary
(1) () (x;¢A)>(A >B) forallp.
p

In other words, if an event A never occurs, then the probability of A does
not exist. Much later on (Section 65) Reichenbach states also the Axiom
of Interpretation

2) If an event C'is to be expected in a sequence with a probability
converging toward 1, it will occur at least once in the se-
quence.

It is not clear whether this axiom is meant as part of the formal theory, but
Reichenbach does say that “whoever admits [a contrary] possibility must
abandon every attempt at a frequency interpretation” (page 345).

Either of these axioms is sufficient to rule out geometric probability
altogether. For any sequence {x;} will be countable, and so receive
probability zero in a geometric example. The complement of the set of
points in the sequence thus receives 1, but this is an event which never
occurs in the sequence.

4. Geometric Probability

In Chapter Six, Reichenbach tries to deal with geometric probability. He
says that this provides an interpretation for his probability calculus.
Without qualification, this is not true; but it would be true if we delete the
Axiom of Normalization (and of course, never add the Axiom of
Interpretation). It would also be true if we allow the class terms A to
stand only for finite or empty regions.

On page 207, Reichenbach actually says that the geometric and
frequency theories are isomorphic. There is no reasonable qualification
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which makes this true. He discusses the special feature of geometric
probability that

(1) if B{= -+ 2By - - - is aseries of measurable sets converging
to measurable set B, then P(B) = llimit P(B,).

His comments on this are curiously phrased. They suggest that it is a
special feature, which was not mentioned before, because he wished to
deal with finite families of events (as well). But of course, 1 does not fail in
the finite case; it holds trivially there. It fails only in the mathematically
curious case in which the space is a countable sequence, and P the limit of
relative frequencies. If 1 were added to the calculus, that would rule out
the relative frequency interpretation; again, unless the designation of the
class variables A, B, . .. were restricted so as to eliminate violations.

It would of course be contrary to Reichenbach’s basic intentions to
solve any problem by restricting the range of the class,variables. For he
wishes to say that the probability of A exists if the limit of the relative
frequency of A in the long run exists — as a general assertion explicating
probability.

5. Higher-level Probabilities

In Chapter 8, Reichenbach considers probabilities of probabifities, asser-
tions such as we might like to symbolize

ey P(P(C/B)=p/A)=q.

He writes these in the forms
(2 (k)(xxeA -2-[(1')()’1«' €B '?'Zki eO).

That would be a second-level assertion. It is abbreviated
() (A @Y.

A third-level assertion would take the form

(4) (Ak%(Bmke_(cmkiep_Dmki)i)m)k.
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The way to understand it, I think, is to think of long runs of experiments
done in the Central Laboratory at the rate of one per day - these are
designated by x;, y,, . . . and so on. On every day, however, long runs of
experiments are done in the Auxiliary Laboratory; the ones done on the
kth day are designated by xii, yis, - . - -

In that way, we certainly get non-trivial iterations of the probability
implication. I doubt that it is the right explication of what we mean. For
although (B -?- C) looks like it is a constituent of formula 3, it really is not.

The truth conditions of 3 and those of

(%) Bep-C

have nothing to do with each other, because in 5 we correlate sequences
of experiments in the Central Laboratory, with respect to B and C, while
in 3 we correlate sequences in the Auxiliary Laboratory with respect to B
and C.

Let me suggest something that might be a slight improvement. First, I
want to do everything in terms of a single function symbol ¢ rather than
the diverse ones x, y, z, . ... For any finite sequence k. . .n of positive
integers, let £, be a countable sequence of events. So one event would
be #,;(3) for example. Now, in some of these long runs of events, such as
t,1, we find they are all A, This is a long run selection from class A. And
we might ask: in those selections from A, how probable is it that half the
B’s are C’s?

(6) relf ({k :relf (C/B, t) =q}/{k : ()t € A)}, o) =¢

where o is the natural number series, is then the explication of assertion
1.

A slightly different construction puts the probability implication in the
antecedent. Thus

7 P(A/P(C/B)=p)=4q

would on the Reichenbachian explication indicate how often an event in
class A occurs in the Central Laboratory, on days when the Auxiliary
Laboratory reports a relative frequency p of C’s among B’s. On my
version it would be explicated as

(8) relf {k: (D)t e A/ {k :relf (C/B, ) =p},0)=¢q.
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That is, it reports how many long runs in which there is a proportion p of
C’s among B’s, are selections from the class A.

My version is semantically just as odd as Reichenbach’s, though it has
the advantage that in both sides of the slash mark, the same class {#, : k a
positive integer} is being talked about. To finish let me just indicate what a
third level sentence would look like.

) P(P(P(D/C)=p/B)=q/A)=r
is explicated by Reichenbach with formula 4, and here with
1 relf ({k :relf ({i :xelf (D/ C, t:) = p}/{i : (Nt (f) € B},
a)=qi/{k : ()t e A}, o)=r.

IV. THE TRANSCENDENCE OF PROBABILITIES

There is something factual about relative frequencies, and something
counterfactual about probabilities. What is probable is a gradation of the
possible. And what is likely to happen is what would happen most often if
we could realize the same circumstances many times over.

This is the logic of the concept. It implies, to my mind, nothing about
the ontology we must accept. But if a physical theory contains probability
assertions, then it contains modal assertions, for that is what they are.® It
is important to see first what such a theory literally says, before we ask
what accepting the theory involves.

The view I shall develop here uses a modal interpretation of statistical
theories.” But it is also a version of the frequency interpretation. Literally
construed, probabilistic theories may posit irreducible modal facts -
propensities — in the world. But a philosophical retrenchment is possible:
we can accept such a theory without believing more than statements
about actual frequencies.

1. Propensities Construed

Probabilities cannot (all, simultaneously) be identified with the relative
frequencies in the actual long run. If we wish to identify them with
something real in the world, we must postulate a physical counterpart. In
the case of modalities and counterfactuals, realist philosophers postulate
dispositions. Probabilities are graded modalities; graded dispositions are
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propensities. And propensities are just right, because they are postulated
to be so.

What exactly is the structure of propensities? Some account is needed,
if they are not to be merely an ad hoc ‘posit’. (‘Posit’ is a verb which
Reichenbach used only in reasonable ways, to indicate empirical hypoth-
eses. In realist metaphysics, however, the operation seems to be con-
ceived on the model of laying eggs, and equally productive.) Kyburg
attempted to provide such an account, which represents propensities by
means of relative frequencies in alternative possible worlds [5]. In this
way he tried to show that there is no real difference between ‘hypothetical
frequency’ and ‘propensity’ views of probability. This attempt did not
quite work because the failure of countable additivity in each possible
world infected the function that represented the propensity.

However, the representation I gave in Part I, Section 4, shows how this
can be done. In each possible world we select a privileged family of sets,
with respect to which relative frequency is countably additive in so far as
that family contains countable unions. In other words, a model structure
for the language of probability, will be a set of possible worlds, which
together form a good family of special frequency spaces. The representa-
tion theorem then shows how to interpret probability. So Kyburg was
right in the main.

Thus propensities do have structure, which can be described in terms of
relative frequencies in different possible worlds. It also allows the follow-
ing to happen; a certain coin has a propensity of 3 to land heads up, but in
fact never does. (The Rosencrantz and Guildenstern Problem, or, if you
like, the Tom Stoppard Paradox.) It allows this in the sense of implying
that it is possible, occurs in some possible world; which is not to say that
our theories would be perfectly all right if it happened.

Of course, if we had a real coin never landing heads up, and since we do
not have an ontological telescope which discloses propensities, we would
more likely conjecture that this coin has a propensity zero to land heads
up. This is a typical feature of realist metaphysics: the appearances do not
uniquely determine the reality behind them. But it is more than that. It is
a typical feature of scientific theories that actual occurrences do not
uniquely determine one and only one model (even up to isomorphism) of
the theory. Just consider the old problem of mass in classical mechanics:
an unaccelerated body may have any mass at all (compatible with the
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empirical facts), but in any model of mechanics it has a unique mass.
There are many such examples. There are some subtle distinctions to be
drawn about possibility here, to which I shall return in the last section.

2. Nominalist Retrenchment

The bone of contention between medieval realists and nominalists was
not so much properties iiberhaupt as causal properties. Fire burns by
virtue of its heat, a real property whose presence explains the regularity in
fire-involving phenomena. The phenomena do not uniquely determine
the world of real properties behind them. As Ockham pointed out, God
could have created the world lawless with respect to any connection
between fire and burning, but simply have decreed in addition an actual
regularity (He directly causing the burning, e.g., the wood turning to
charcoal, on all and only those occasions when fire is sufficiently proxi-
mate). So we cannot infer the real causal properties, dispositions and
hidden powers. But we can postulate them, and then reap the benefit of
their explanatory power. At this point, the nominalist can reject only the
why-questions the realist wants answered (“No, there is no underlying
reason for the regularities in nature — they are actual but not necessary””)
and maintain that science has the air of postulating hidden powers only
because it wishes to systematize the description of actual regularities.
To give a systematic description of the actual regularities is to exhibit
them as an arbitrary fragment of a larger unified whole. Since actuality is
all there is, there is only one picture we can form of that larger whole: it is
the system of all possible worlds. Thus Kant in his Inaugural Dissertation :

. . . the bond constituting the essential form of a world is regarded as the principle of possible
interactions of the substances constituting the world. For actual interactions do not belong to
essence but to state. ([9], page 40.)

To a nominalist, this picture of the actual as but one of a family of
possibles can be no more than a picture; but it can be granted to be the
picture that governs our thinking and reasoning.

A distinction must be drawn between what a theory says, and what we
believe when we accept that theory. Science is shot through and through
with modal locutions. The picture the scientist paints holds irreducible
necessities and probabilities, dispositions and propensities. Translation
without loss into a ‘nominalist idiom’ is impossible ~ but it is also a
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mistaken ideal. The nominalist should focus on the use to which the
picture is put, and argue that this use does not involve automatic
commitment to the reality of all elements of the picture.

3. Epistemic Attitudes

To explain how a nominalist retrenchment is possible in the specific case
of probabilistic theories, I shall try to answer two questions: what is it to
accept a (statistical) theory? and, what special role is being played by the
‘privileged’ sets in my representation?

Elsewhere I have given a general account of acceptance versus belief.?
A scientific theory specifies a family of models for empirical phenomena.
Moreover, it specifies for each of these models a division into the
observable parts (‘empirical substructures’) and the rest. The theory is
true if at least one of its models is a faithful replica of the world, correct in
all details. If not true, the theory can still be empirically adequate: this
means that the actual phenomena are faithfully represented by the
empirical substructures of one of its models. To believe a theory is to
believe that it is true; but accepting a theory involves only belief in its
empirical adequacy.

This is a distinction between two epistemic attitudes, belief and accep-
tance. 1 am not arguing here, only presenting my view, in a quick and
summary manner. A similar distinction must be drawn in the attitudes
struck to a particular model, when we say that the model ‘fits’ the world.
This can mean that it is a faithful replica, or merely that the actual
phenomena are faithfully mirrored by empirical substructures of this
model.

When the model is of a family of possible worlds, then the latter belief,
which is about the actual phenomena, only requires that at least one of
these possible worlds exhibits the requisite fit. This is to the point when
the theory is a probabilistic theory, for in that case it will never narrow
down the possibilities to one. It will always say merely: “The actual world
is among the members of this family of possible worlds, so-and-so
constituted and related.”

Now it is possible to see how a statistical theory in general must be
constructed. Each model presents a family of possible worlds. In each
world, certain substructures are identified as observable. Empirical ade-
quacy consists in this: the observable structures in our world correspond
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faithfully to observable structures in one of these possible worlds in one of
these models. But all this fits in well with my representation of a
probability space (which is what a model of a statistical theory must be).
For I represent it as a family of possible worlds, in each of which a
particular family of events is distinguished from the other events (as
‘privileged’). These privileged events can be the candidates for images of
observable events.

To see whether this holds, we must look at the testing situation. It is
very important to be careful about the modality in ‘observable’. Recall
that we are distinguishing two epistemic attitudes to theories, in order to
see how much ontological commitment is forced upon us when we accept
a theory. Since we are trying to answer an anthropocentric question, our
distinctions must be anthropocentric too. It will not do to say that DNA is
observable because there could be creatures who have electron micro-
scopes for eyes, nor that absolute simultaneity is an observable relation-
ship, because it could be observed if there were signals faster than light.
What is observable is determined by the very science we are trying to
interpret, when it discusses our place in the universe. In the testing
situation for a statistical theory, we use a language in which we report
actual proportions in finite sets, and estimate (hypothesize, postulate,
extrapolate) relative frequencies in many other sets. The explicitly check-
able sets are those which can be described in this language ~ and these are
the sets which we try to match against the privileged sets in some possible
world in the model.

I have already indicated in Part I how I see this. We consider the totality
of all sets on whose relative frequency we shall explicitly check in the long
run - whatever they be. We estimate their probabilities on the basis of
actual finite proportions in samples. Since in our language we have the
resources to denote limits, by means of expressions like limit, ., Y.,
™, it follows that we shall sometimes estimate relative frequencies of
limits of sets we have treated already; and we make this estimation by a
limiting construction. But that means that we do so by countable addition.
For in the presence of finite additivity, the postulates

(1) m(B)=lingtm(Bn)ifB12"'2Bk2"'

converges to B
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n=1
countable disjoint family

are equivalent.

Now the sets explicitly checked and subject to such estimating hypoth-
eses, are all explicitly named in our language. This language is not static, it
can be enriched day by day. But even so, it will be a language with only
countably many expressions in it, even in the long run. So the family of
privileged sets - the ones encountered explicitly in our dialogue with
nature — whichever they may be, shall be countable.

The probabilistic theory says that our world is a member of a certain
good family of special frequency spaces. Let us consider the Rosencrantz
and Guildenstern problem again. Suppose that the theory implies that
coins of that construction land heads with probability one-half.’ Imagine
also that this coin is tossed every day from now on, and lands heads every
time. In that case the theory is false, and that because it is not empirically
adequate. For we have here a class of events described in our language,
whose actual relative frequency is not equal to the probability the theory
attributes to it. If this particular coin’s behaviour is an isolated anomaly,
the theory may still be a useful one, in some attenuated way. But of
course, what I am describing here is not a situation of epistemic interest.
What I say is an extrapolation from this: we would know only that the first
x tosses had landed heads, and we would count this as prima facie
evidence against the theory; but as long as we accept the theory we shall
assert that in the long run, this coin too will land heads half the time. It
seems mistaken to me to interpret statistical theories in such a way that
they can be true if the relative frequencies do not bear out the prob-
abilities. For if that is done (and various propensity views suggest it) then it
is possible to hold this theory of our present example, and yet not assert
that in the long run Rosencrantz’ coin will follow suit - or indeed, any
coin, all coins. The empirical content disappears.

What is important about Rosencrantz’ coin is that the model should
have in it some possible world (which we emphatically deny to be the
actual one) in which an event described by us here shows aberrant relative
frequencies. What we must explain is the assertion that this is always
possible, but never true. (To be logical: as long as we are looking at a
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model of this theory, then in each possible world therein it is #7ue that if X
is a described event, the probability of X equals its relative frequency,
and it is also true in each world that possibly, the relative frequency of X is
not its probability. The language in which X is described, is here given a
semantics in the fashion of ‘two-dimensional modal logic’, so that a
sentence can be true in every world where that sentence expresses a
proposition, but still it does not express a necessary proposition. Consider
‘I am here’ which is true in every world in which there are contextual
factors (a speaker, a place) fixing the referents of the terms, but which
expresses in our world the contingent proposition that van Fraassen is in
Toronto.)

To summarize, suppose that a physical theory provides me with
probabilistic models. Each such model, as I interpret science, is really a
model of a family of possible worlds. The empirical content of the theory
lies in the assertion that some member of that family, for some model of
the theory, fits our world —insofar as all empirically ascertained
phenomena in the long run are concerned, whatever they may be.

To accept a theory, in my view, is only to believe it to be empirically
adequate ~ which is, to believe that empirical content which I just indi-
cated. So to accept a probabilistic theory involves belief only in an
assertion about relative frequencies in the long run.

In this, I feel, Reichenbach was right.

University of Toronto
NOTES

* The author wishes to thank Professors R. Giere (Indiana University), H. E. Kyburg Jr.
(University of Rochester), and T. Seidenfeld (University of Pittsburgh) for their help, and
the Canada Council for supporting this research through grant S74-0590.

! I use Kolmogorov’s term ‘Borel field’ rather than the more common ‘o-field’, because I
shall use the symbol sigma for other purposes.

2 R. von Mises claimed countable additivity in [12], Chapter I; but the failure of this
property for relative frequencies has long been known. See [4], pages 46 and 53 and [3],
pages 67-68; I owe these two references to Professors Seidenfeld and Giere respectively.
% This argument is reported in [ 10], pages 3-59 and 3-60; I owe this reference to Professor
Giere.

* Professor Kyburg pointed out to me that the conclusion does not follow from the
Bernoulli theorem. Needed for the deduction is also the Borel-Cantelli lemma. For details
see Ash [1], Chapter 7; especially the theorem called Strong Law of Large Numbers for
Identically Distributed Variables.
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5 This subject, and Kolmogorov’s discussion of related problems, will be treated in a
forthcoming paper ‘Representation of Conditional Probabilities’.

 This point of view about modality in scientific theories was argued strongly in a
symposium at the Philosophy of Science Association 1972 Biannual Meeting, by Suppes,
Bressan, and myself; the emphasis on probability assertions as modal statements was
Suppes’.

7 In other publications I have developed a modal interpretation of the mixed states of
quantum mechanics which can be regarded as a special case of the present view.

8 In my ‘To Save the Phenomena’; a version was presented at the Canadian Philosophical
Association, Western Division, University of Calgary, October 1975; a new version will be
presented at the American Philosophical Association, Eastern Division, 1976.

° I am keeping the example simple and schematic. Our actual beliefs, it seems to me, imply
only that in the set of all tosses of all coins, which is most likely finite but very large, half show
heads. The same reasoning applies. Our belief is false if the proportion of relative frequency
is not one-half. This is quite possible ~ we also believe that. But would be a mistake to infer
that we believe that perhaps the proportion is actually not one-half. We believe that our
beliefs could be false, not that they are false - what we believe are true but contingent
propositions. (This problem can also not be handled by saying that a theory which asserts
that the probability is heads equals one-half implies only that the actual proportion is most
likely one-half; for then the same problem obviously arises again.)
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